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Abstract. Population fluctuations in a predator-prey system are analyzed for the case where the number of
prey could be determined, subject to measurement noise, but the number of predators was unknown. The
problem of how to infer the unmeasured predator dynamics, as well as the model parameters, is addressed.
Two solutions are suggested. In the first of these, measurement noise and the dynamical noise in the
equation for predator population are neglected; the problem is reduced to a one-dimensional case, and a
Bayesian dynamical inference algorithm is employed to reconstruct the model parameters. In the second
solution a full-scale Markov Chain Monte Carlo simulation is used to infer both the unknown predator
trajectory, and also the model parameters, using the one-dimensional solution as an initial guess.

PACS. 02.50.Tt Inference methods – 02.50.Ng Distribution theory and Monte Carlo studies – 87.23.Cc
Population dynamics and ecological pattern formation – 02.50.-r Probability theory, stochastic processes,
and statistics

1 Introduction

Population biologists use time-series data to infer the fac-
tors that regulate natural populations [1] and to deter-
mine when populations may be at risk of extinction. Often,
however, only a few of the system’s variables can be mea-
sured, while the rest of the variables remain unobservable,
or hidden [2–5]. Furthermore, models describing popula-
tion dynamics are multidimensional, nonlinear, stochastic
and usually are not known exactly from first principles.
A classical example is the intensively studied [3,6,7] cy-
cling behavior of populations of small rodents observed in
Kilpisjärvi, Finnish Lapland [8], 1952-1992 (see Fig. 1a)
where the number of predators could not be measured,
the dynamics was fully nonlinear and subject to seasonal
and random perturbations, and the model was not ex-
actly known beforehand. In these settings, perhaps the
most fundamentally difficult unsolved problem is how, and
to what extent, one can reconstruct missing information
and deduce both the model and the full system trajec-
tory from a given set of noise-corrupted, incomplete, tra-
jectory measurements. Although specifically a problem of
population biology (the cited database accumulates nearly
5000 individual datasets of similar structure, collected
over more then 150 years), its solution is of importance
across many disciplines where similar situations arise in
diverse scientific contexts. Examples range from molec-
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Fig. 1. The population dynamics of small rodents observed
in Kilpisjärvi, Finnish Lapland, 1952–1992 [3] is shown by yel-
low dots. The full black line is a guide to the eye. The blue
line shows a simulation of the population dynamics using the
model (1).

ular motors [9] and epidemiology [2] to coupled matter-
radiation systems [10].

It was shown earlier that the Markov Chain Monte
Carlo (MCMC) and particle filter approaches to dynam-
ical inference [4,5,11,12] can be very useful in this con-
text, especially in applications to maps. However, the tech-
niques [11,12] developed for one-dimensional maps are not
immediately applicable to flows. The reason is that the

http://dx.doi.org/10.1140/epjb/e2008-00340-5
http://www.epj.org
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log-likelihood functions in the two cases are of different
form due to different transformations between the stochas-
tic and dynamical variables [13,14].

In this paper we extend earlier results in two impor-
tant respects. First, we consider continuous systems and
introduce for this case the correct likelihood function of
observations, taking into account the Jacobian of transfor-
mation from stochastic to dynamical variables. Secondly,
we consider an extreme case of missing data, when the
entire dynamical trajectory of the predator population is
missing and show how to infer both the missing dynami-
cal trajectory and unknown model parameters. Note that
the case when all the dynamical variables are measured is
much simpler and can be solved [15] without application of
the MCMC technique. As an example we consider a model
inspired by analysis of the fluctuations in a population of
small rodents in Finnish Lapland in order to address the
problem of inference in a realistic setting. It will be shown
that an extended MCMC method can be applied to re-
construct both the model parameters and the unobserved
(hidden) predator dynamics.

In Section 2 the model of the rodent population and
its transformation to standard form are discussed. The
approximation of the model by a one-dimensional integro-
differential equation, and inference of the model param-
eters in this simplified case, are considered in Section 4.
The MCMC algorithm for the reconstruction of the pa-
rameters and the hidden predator trajectory for the full
model are discussed in Section 5. Finally, conclusions are
drawn in Section 6.

2 Model

2.1 Original model

Fluctuations of population density that are nearly peri-
odic in time, but cannot be explained by seasonal varia-
tion, have fascinated ecologists for decades. But there is
still no general agreement on the reasons for these cyclic
variations in abundance. Extensive studies of population
cycling have been carried out for the Finnish rodents men-
tioned above [3,6,7] and for lemming populations in Arctic
tundra [16]. These studies include in particular a remark-
able data series [17] for fluctuations in vole population
from Kilpisjärvi, Finnish Lapland and a long-term field
study of the cycling dynamics of collared lemming from
northeastern Greenland. Many features of the observed
fluctuations can be explained by the predator-prey model
introduced in [3,6,16]. The parameters of these models and
the exact functional forms of the various terms are known
only approximately, while the predator dynamics is un-
observable in most cases. To gain further insight into the
ecological mechanisms underlying population fluctuation
it becomes essential to infer unobserved predator dynam-
ics and to obtain model parameters from experimental
time-series data. To set the development of the inferen-
tial framework in a proper mathematical context let us
summarize briefly the main results of the corresponding
predator-prey model.

Table 1. Values of the model parameters introduced for pop-
ulations of a small rodent in Fennoscandia in [3].

Parameter units range

r yr−1 4–7

s yr−1 1–1.5

K ha−1 100–300

C yr−1weasel−1 500–700

Q voles weasel−1 20–40

G ha−1 yr−1 70–125

H ha−1 11–16

D ha−1 5–6

e1 - 0.5–1

e2 - 0.5–1

According to [3,6,16] the cycling dynamics of the vole
population in Finnish Lapland is mainly controlled by
the interplay between the so-called specialist predators
(weasels) and generalist predators (foxes, owls, and oth-
ers). The corresponding equations for the fluctuating den-
sities of rodents N and their predators P can [3,7] be
written as

Ṅ = rN (1 − e1 sin(2πt) + σnξn(t)) − (r/K)N2

− GN2

N2 +H2
− CNP

N +D
, (1)

Ṗ = sP (1 − e2 sin(2πt) + σpξp(t)) − sQ
P 2

N
.

The effect of the generalist predators, whose population
does not directly depend on the number of voles, is de-
scribed by a functional response of Type III with maxi-
mum rate of mortality G and half-saturation prey density
H . The vole population is characterized by prey-carrying
capacity K and by the intrinsic rate of vole population
growth r, which is disturbed by seasonal and stochastic
forcing with amplitudes e1 and σn respectively. The spe-
cialist predator population is described by the intrinsic rate
of weasel population growth s, maximum consumption per
predator C, the half-saturation constant D, by seasonal
and stochastic forcing with amplitudes e2 and σp, and by
the carrying capacity proportional to prey density (Q is
the constant of proportionality). The measurement error
is modeled by a log-normal distribution, i.e. the measured
rodent density N ′ is related to the actual (unknown) value
N via N ′ = N exp(σobsη(t)) where η(t) is a white Gaus-
sian noise of unit intensity. The predator density cannot
be measured and so the variable P is hidden. The values of
the model parameters estimated in earlier research based
on extensive field studies are summarized in Table 1. The
problem is, however, that these field estimates are not re-
lated directly to the time-series data, and the range of
parameter values is too broad. It is highly desirable from
the point of view of understanding ecological mechanisms
of population fluctuation, their prediction, and control, to
develop methods for the estimation of model parameters
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directly from the time-series data. Below we suggest two
such methods and analyze their performance using syn-
thetic time-series.

To generate synthetic time-series data we use equa-
tions (1) to obtain N(t) and the measurement model to
produce ln(N ′(t)) = ln(N(t)) + σobsη(t). The synthetic
data points shown by the red squares in Figure 1 are
obtained by resampling N ′(t) with sampling frequency
0.5 year−1. It can be seen from the figure that the model
described above reproduces quite well the amplitude and
frequency of the fluctuations of vole population.

The problem of dynamical inference can be stated as
follows: use the 80 noise-corrupted data points to recover
both the hidden dynamics of their predators P (t) and the
parameters of the model (1). This is a problem that could
not be solved earlier because no general methods were
available for its solution (but cf. discussions of the very dif-
ferent case when either dynamical or measurement noise
is absent [7,18], or where only model parameters are esti-
mated [4,5]).

2.2 Model transformation

To write equations (1) in dimensionless variables, some
known nominal values of the scaling coefficients K ′ and
Q′ are introduced. The dynamical equations for the scaled
prey densities n = N/K ′ and predator p = Q′P

K′ popula-
tions take the form

ṅ = rn (1 − e1 sin(2πt+ ψ0) + σnξn(t))

−r̃n2 − gn2

n2 + h2
− anp

n+ d
,

ṗ = sp (1 − e2 sin(2πt+ ψ0) + σpξp(t)) − s̃
p2

n
. (2)

The coefficients in this model are g = G/K ′, a = C/Q′,
d = D/K ′, and h = H/K ′. Note also the relationships
between the original coefficients r and s and the scaled
coefficients r̃ = rK/K ′ and s̃ = sQ/Q′. They allow one
to infer the carrying capacity K and the constant of pro-
portionality of populations Q that are difficult to estimate
using other methods. Note also that we have introduced
into the seasonal variability terms an additional parame-
ter ψ0 corresponding to the unknown phase of the periodic
seasonal driving.

The difficulties in applying methods of dynamical in-
ference to equations (2) stem from the following facts:
(i) the noise terms are multiplicative; (ii) the predator
trajectory is hidden; and (iii) the prey dynamics is mea-
sured together with some measurement noise. We over-
come the first problem by making the changes of variable:
x1(t) = log(n) and x2(t) = log(p). This set of equations

can then be reduced to the form

ẋ1 = r (1 − e1 sin(2πt+ ψ0)) − r̃ex1

− gex1

e2x1 + h2
− aex2

ex1 + d
+ rσnξn(t),

ẋ2 = s (1−e2 sin(2πt+ ψ0))−s̃ex2−x1 +sσpξp(t), (3)

y(t) = x1(t) + σobsη(t),

where y = ln(N ′/K ′).
A solution of two other problems will be considered in a

general Bayesian framework in Sections 3 and 5. But some
very useful results can be obtained in a one-dimensional
approximation (see Sect. 4), neglecting both measurement
noise and noise in the second equation of (3). The latter
approximation was also adopted earlier in [7] where esti-
mation of the model parameters in (3) was performed by
introducing numerically a so-called “atlas” function [19].
We show below that this approximation allows for an an-
alytic solution of the problem at hand and provides a very
useful guide to the actual values of the model parameters.

3 Bayesian inferential framework for hidden
dynamical variables

The problem of dynamical inference is usually considered
on a discrete time lattice (tk = h · k, k = 0, ...,K), in
which case the model (3) can be rewritten in a more gen-
eral form as follows

xk+1 = xk + h f(x∗
k|c) +

√
hD̂zk,

yk = Γ̂xk +
√

M̂ηk,

⎫
⎬

⎭
(4)

Here zk = 1√
h
{∫ tk+1

tk
ξn(t)dt,

∫ tk+1

tk
ξp(t)dt}, D̂ is a diag-

onal matrix with elements {(rσn)2, (sσp)2} on the main
diagonal, M̂ in our case is simply σ2

obs, and f(x∗
k|c) is

a deterministic vector field of the system (3) with x∗
k =

xk+xk+1
2 . The measured M -dimensional time-series data

Y = {yk} in our model is {ln(N ′
k/K

′)}, and the mea-
surement matrix Γ̂ in this case is 1. The vector of un-
known parameters can now combine (cf. [12,20]) a set
of L-dimensional (L > M) hidden dynamical variables
X = {xk} with model coefficients as follows

M = {c, Dij , σobs, Γij ,X}. (5)

In the Bayesian approach to dynamical inference, the
posterior probability ρpost(M|Y) of unknown parameters
conditioned on observations Y is given by Bayes’ theorem

ρpost(M|Y) =
	(Y|M) ρpr(M)∫
	(Y|M) ρpr(M)dM (6)

relating ρpost(M|Y) to the probability of observations
(likelihood) 	(Y|M) conditioned on the M and to the
given prior probability ρpr(M) which is independent
of observation. Accordingly the main problem of the
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Bayesian approach is to find the likelihood function
	(Y|M) and to optimize the posterior distribution with
respect to the parameters M. We emphasize that the
	(Y|M) is in fact the likelihood of the observed variables
Y alone conditioned on the set of unknown parameters M
that includes both model parameters and trajectories of
hidden variables (see (5)).

To find an analytic form of 	(Y|M), we notice, follow-
ing earlier work (see e.g. [14,15,21] and references therein),
that the likelihood can be factorized

	(Y|M) = ρ(Y|X )ρ(X|M′), (7)

where M′ is the reduced set of parameters that does not
include hidden variables (cf. (5))

M′ = {c, Dij , σobs, Γij}.
The conditional probabilities ρ(Y|X ) and ρ(X|M′) can
be found using known distributions for the independent
sources of white Gaussian noise zn and ηk in (4)

P [zn] =
N−1∏

n=0

dzn exp
(
− zT

n
D̂−1

2h zn

)

√
(2πh)L|D̂|

,

P [ηn] =
N−1∏

n=0

dηn exp
(
−ηT

n
M̂−1

2h ηn

)

√
(2πh)M |M̂|

. (8)

Using (4) to transform from stochastic variables zn and
ηk to dynamical variables xk and yk we obtain

ρ(X|M′) = ρst(x0)J({xn})
N−1∏

n=0

1
√

(2πh)L|D̂|

× exp
(
−h

2
[ẋn − f(x∗

n; c)]TD̂−1[ẋn − f(x∗
n; c)]

)
, (9)

ρ(Y|X ) =
N−1∏

n=0

1
√

(2πh)M |M̂|

× exp
(
−1

2
[yn − Γ̂xn]T M̂−1 [yn − Γ̂xn]

)
,(10)

where ρst(x) signifies the stationary distribution of x(t),
and the Jacobian of the transformation is given by

J({xn}) =
∣
∣
∣∣

{
∂zln

∂xl′n′

}∣∣
∣∣ �

N∏

n=1

L∏

l=1

[
1 − h

2
∂fl(x∗

n; c)
∂xln

]

� exp

[

−h
2

N∑

n=1

∇.(f(xn)|c)
]

. (11)

Using (7–11) (see also [14,15,21]) the minus logarithm of
the likelihood to observe Y can be factorized and written

in the form

− 2
K

ln 	(Y|M) = ln |D̂| + ln |M̂|

+
1
K

K∑

k=0

[yk−Γ̂xk]TM̂−1[yk−Γ̂xk]

+
h

K

K−1∑

k=0

{
∇·(f(xk)|c)+[ẋk − f(x∗

k|c)]TD̂−1[ẋk − f(x∗
k|c)]

}

+ 2L ln(2πh). (12)

It is important to note that this likelihood function is
asymptotically exact in the limit h→ 0 and K → ∞ while
T = Kh remains constant. The term ∇.(f(xk)|c) in the
(12) term emerges in the path integral presentation of 	 as
the Jacobian of the transformation from noise variables to
dynamical variables [22,23] and provides optimal compen-
sation for the noise-induced errors of inference [14,15,21].

Now we are ready to discuss optimization of the poste-
rior distribution using e.g. the MCMC method. But first
we consider a one-dimensional approximation of (3).

4 One-dimensional approximation

4.1 1D model

A very useful guide to the actual values of the model pa-
rameters in (3) can be obtained if we assume (cf [7]) that
the noise terms in the measurement equation and predator
dynamics are negligible. We note that this approximation
corresponds, in fact, to the original model suggested by
Hanski and Turchin [3]. In their paper they comment that
inference of the model parameters is prevented by the fact
that the predator population was not observed. Later [7]
they performed estimation of the model parameters in (3)
by excluding predator dynamics and introducing numer-
ically a so-called “atlas” function (that relates prey pop-
ulation at the time step k to its values at the time steps
k − 1 and k − 2 see [19]).

We notice, however, that in this case the predator pop-
ulation is uniquely determined by the population of prey
for a given set of the parameters in the second equation.
This fact allows us to reduce the inference problem to one
dimension and to infer both predator dynamics and the
model parameters. Furthermore, many of the model pa-
rameters can be estimated in this case analytically using
Bayesian method described in the previous section.

Indeed, dividing the second equation in (2)

ṗ = sp (1 − e2 sin(2πt+ ψ0)) − s̃
p2

n
, (13)

by p2, assuming for simplicity ψ0 = 0 in this equation,
and introducing variable z = 1/p we have

ż = (s1 + s2 sin(2πt)) z + s3
1
n
,
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where s1 = s, s2 = −se2, s3 = −s̃. This equation can be
integrated to obtain the one-dimensional approximation
of the problem (3) in the form

ẋ1 = r (1 − e1 sin(2πt+ ψ0)) − r̃ex1 − gex1

e2x1 + h2

− az−1

ex + d
+ rσnξn(t), (14)

z = e−s1t− s2
2π cos(2πt)

(
c0 + s3

×
∫ t

t0

dτ

n(τ)
es1τ+

s2
2π cos(2πτ)

)
. (15)

4.2 Dynamical inference algorithm

To infer parameters of the model (21) we can apply earlier
results [13,14] by introducing the following parametriza-
tion of the vector field

f(x|c) = F̂(x) c, (16)

where matrix F̂ has the form

F̂ =

⎡

⎢
⎣

⎛

⎜
⎝

φ1 . . . 0
...

. . .
...

0 . . . φ1

⎞

⎟
⎠ . . .

⎛

⎜
⎝

φF . . . 0
...

. . .
...

0 . . . φF

⎞

⎟
⎠

⎤

⎥
⎦ . (17)

Choosing a Gaussian prior PDF for c and a uniform prior
PDF for D̂, we obtain [14] the following equations for
updating the dynamical model parameters

〈c〉 =

(

h
K−1∑

k=0

F̂T
k D̂−1F̂k

)−1

×
(

h

K−1∑

k=0

[
F̂T

k D̂−1 ẋk − v(xk)
2

])

, (18)

〈D̂〉 =
h

K

K−1∑

k=0

[
ẋk − F̂k c

] [
ẋk − F̂k c

]T
, (19)

where F̂k ≡ F̂(xk), and the components of the vector v(x)
related to the Jacobian of transformation in (9) are

vm(x) =
L∑

l=1

∂Flm(x)
∂xl

, m = 1, . . . , F. (20)

equations (18, 19) provide the solution for the inference
problem in the case when the minus log-likelihood (12)
is a quadratic function of the model parameters c. Note
that these equations have to be applied iteratively: first
we calculate D̂ for given initial values of c; next we cal-
culate c using the value of D̂ obtained at the previous
step; these two steps are then repeated until convergence
is finally achieved. Usually 2–3 iterations are sufficient for
convergence.

For our specific model equations (21) can now be writ-
ten as follows

ẋ1 = {φn}
(
cl
)T

+ rσnξn(t), (21)

with the base functions

{φn}=
{
1, sin(2πt), cos(2πt), ex,

ex

e2x+h2
,
z−1

ex+d

}
. (22)

Here φ5 = φ5(h) and φ6 = φ5(d, s1, s2, s3) are nonlinear
functions of some of the model parameters

{cn} = {cl, cnl} = {{r,−re1 cos(ψ0),−re1 sin(ψ0),

−rK
′

K
,−g,−a}, {h, d, s1, s2, s3}}. (23)

Therefore the algorithm (18, 19) has to be extended to
infer nonlinear parameters cnl = {h, d, s1, s2, s3}.

4.3 Conjugate gradient search in nonlinear parameter
space

A number of algorithms can be employed to infer nonlin-
ear model parameters, including the MCMC considered
in Section 5. In general, it is useful to compare the per-
formance of various algorithms, since none of them can
guarantee a convergence. Here we consider the conjugate
gradient search in the space of nonlinear parameters. To
do so we write the cost function as an abbreviated minus
log-likelihood function (12) that includes only the depen-
dence on the nonlinear parameters cnl given in (23) as
follows

g(cl, cnl) = clT bs

(
D̂, cnl

)
+

1
2
clT Ĥs

(
D̂, cnl

)
cl, (24)

with the following definitions of bs

(
D̂, cnl

)
and

Ĥs

(
D̂, cnl

)
in the one-dimensional case (21)

bs

(
D̂, cnl

)
=
h

2

K−1∑

k=0

[−→
φ′k − 2

D
ẋk

−→
φ k

]
,

Ĥs

(
D̂, cnl

)
= h

K−1∑

k=0

−→
φ k

1
D

−→
φ T

k , (25)

where the base functions φk are given in (22). The resul-
tant dependence of the cost function g(cl, cnl) on the val-
ues of the nonlinear parameters (while the values of cl are
fixed) has a well-pronounced nearly quadratic minimum.
Therefore, we can apply a conjugate gradient method to
optimize the cost function with respect to the nonlin-
ear parameters. Below we consider as an example conver-
gence of the g(s) in the space of the predator parameters
s = {s1, s2, s3} keeping all other parameters fixed.

To find the gradient of the cost function (24) we note
that there is only one function that depends on the preda-
tor parameters. It is φ6(tk) = z−1(s, tk)/(exk + d), which
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Fig. 2. Example of the inference of the linear parameters r and g in model (21). The distributions are obtained using 1000
trajectories with 128000 points each and a sample interval of 0.001. The coefficients {s, h, d, e2} are assumed to be known.

depends on the predator parameters via (15). Therefore,
we can write

∇g(s) = hc6

K−1∑

k=0

1
(exk + d)

[
− exk

2(exk + d)

+
1
D

(

−ẋk +
6∑

m=1

cmφk,m

)]

∇pk(s). (26)

Taking into account the expression (15) we obtain

∂g(s)
∂s1

= hc6

K−1∑

k=0

F1(tk)pk(s)

×
[
t− s3F2(tk)

∫ t

t0

τdτ

x(τ)
es1τ+

s2
2π cos(2πτ)

]
, (27)

∂g(s)
∂s2

= hc6

K−1∑

k=0

F1(tk)pk(s)
[
cos(2πτ)

2π

−s3F2(tk)
∫ t

t0

cos(2πτ)dτ
2πx(τ)

es1τ+
s2
2π cos(2πτ)

]
,(28)

∂g(s)
∂s3

= hc6

K−1∑

k=0

F1(tk)pk(s)

×
[
−F2(tk)

∫ t

t0

dτ

x(τ)
es1τ+

s2
2π cos(2πτ)

]
. (29)

Here

F1(tk) =
1

(exk + d)

[
− exk

2(exk + d)

+
1
D

(

−ẋk +
6∑

m=1

cmφk,m

)]

and
F2(tk) =

1

c0 + s3
∫ tk

t0
dτ

x(τ)e
s1τ+

s2
2π cos(2πτ)

.

Finally, to infer the predator parameters, we use the fol-
lowing conjugate gradient algorithm:

– Initialize values of the parameters s0 = {s(0)1 , s(0)2 ,
s
(0)
3 };

– find the initial direction of the search: d0 = −∇sg(s0);
– update values of the initial guess for the coefficients

according to the rule s1 = s0 + αd0;
– find the new direction of the search (conju-

gate to the previous direction) according to the
rule: d1 = −∇sg(s1) + w1d0, where w1 =
||∇sg(s1)||2/||∇sg(s0)||2;

– go back to step 3, and iterate until convergence is
achieved.

The step α in the conjugate direction is found by a line-
optimization procedure.

4.4 Inference results

Examples of the one-dimensional inference of linear co-
efficients of the model (21) are shown in Figure 2 and
summarized in Table 2. It can be seen from both the fig-
ure and the table that the relative error of the inference
of the linear parameters is less than 2% except in the case
of e1, for which it is 3.75%. We note, however, that such a
small error was achieved for densely sampled data, when
the nonlinear parameters were set to their correct values.
Even for more realistic settings, however, the method pro-
vides a useful initial guess for the linear model parameters
and for the hidden predator trajectory.

Furthermore, using the conjugate gradient technique
one can also estimate values of the nonlinear parameters
of the problem. The corresponding results are illustrated
in Figure 3 and summarized in Table 3. Figure 3 shows
the convergence of nonlinear parameters in the projections
of the cost functions g(s) on the hyperplanes defined by
conditions s3 = const. in Figure 3a and s2 = const. in
Figure 3b.

We, therefore, conclude that the one-dimensional ap-
proximation (21) of the predator-prey dynamics (3) pro-
vides a useful guide to the values of the model parameters



D.G. Luchinsky et al.: Dynamical inference of hidden biological populations 375

Table 2. Values of the parameters in model (3) that were used to obtain the sample of synthetic data shown in Figure 1. The
third-from-top row shows values of the inferred parameters using 1000 prey trajectories with 128000 points each and a sample
interval of 0.001. The bottom row shows values of the corresponding standard deviations. Missing standard deviations indicate
that coefficients ({s, h, d, e2}) are assumed to be known.

parameter r s a g h d e1 e2 cos(ψ0) D

actual value 5.25 1.25 -15 -2 0.4 0.04 0.38 0.8 1.0 0.0625

inferred value 5.2 1.25 -14.9 -1.99 0.4 0.04 0.38 0.8 0.99 0.063√
σ2 0.08 - 0.28 0.035 - - 0.015 - 0.011 0.0004

Fig. 3. (a) Hyperplane of the cost function defined by the condition s3 = s∗3, where s∗3 is the optimal value of the parameter
s3. Red dots show evolution of the solution of the optimization problem starting from the initial values of the parameters
sin
1 = 0.08 and sin

2 = 0.1. (b) Hyperplane of the cost function are defined by the condition s2 = s∗2, where s∗2 is the optimal
value of the parameter s2. Red dots show evolution of the solution of the optimization problem starting from the initial values
of the parameters sin

1 = 0.08 and sin
3 = 0.3.

Table 3. Values of the nonlinear parameters in model (21)
inferred using conjugate gradient method in 8 steps. The actual
values are shown in the bottom line.

parameter s1 s2 s3 cost

initial value 0.1 2.2 2.5 –1355

2nd iteration 1.161 2.384 2.152 –1467

4th iteration 1.225 2.744 1.262 –1479

8th iteration 1.1534 3.344 1.308 –1482.5

actual value 1.25 4 1.25 –1482.9

and for the hidden predator trajectory (15). The values
obtained in this analysis can be used as an initial guess
for more general and numerically extensive searches such
as the MCMC technique described in the following section.

5 The Markov Chain Monte Carlo (MCMC)
technique

We now consider the problem of inferring both the pa-
rameters of the nonlinear stochastic model, and the la-
tent dynamical variables, simultaneously. The MCMC
approach [24] to such inference was adopted recently

in [11,12] for one-dimensional maps. We extend these re-
sults to flows by including the correct prefactor term into
the likelihood function (12) as discussed in the introduc-
tion (see also [13,14,21]), and by considering an extreme
case of missing data when the entire predator trajectory
is missing.

For the sake of simplicity we assume the noise intensi-
ties to be fixed and introduce an abbreviated vector of
the unknown parameters M̃ = {c, {xk}}. The desired
probability of the model parameters is then p(M̃|Y) ∝
ρpost(M|Y) = const × exp(S), where S = −	(Y|M) is
given in (12). We analyze the convergence only in the
space of parameters c and dynamical trajectories. With
this function the MCMC algorithm can be briefly sum-
marized as follows

(1) Take an initial guess for M̃(0) = {c(0), {x(0)
k }};

(2) sample a trajectory from p(xk|xk−1, xk+1, M̃, D̂,
σobs, yt) for k = 0, ...,K using Gibbs sampler with
Metropolis-Hastings (M-H) steps [25];

(3) sample model parameters from p(M̃|{xt}, D̂,
σobs, {yt}) using M-H algorithm or possibly directly
using equation (18);

(4) repeat steps (2), (3) until convergence is achieved.

Note that this algorithm takes into account that the co-
ordinate xk enters only in two terms of the sum (12).
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Table 4. Convergence of some of the model parameters in the MCMC calculations. Notice that, unlike in Table 2, all the model
parameters except noise intensities are unknown. The initial values of the model parameters are drawn according to a uniform
distribution from the intervals shown in the third raw.

parameter r s a g h d e1 e2

actual value 6.0 1.2 –15 –1 1.0 0.04 0.07 0.21

initial range 1:10 0.3:2 –1:–25 –0.01:–2 0.2:2 0.01:1 –0.5:1.3 –0.5:1.3

inferred value 6.5 1.17 –16.4 –0.96 0.82 0.05 0.22 0.38√
σ2 0.5 0.09 1.3 0.4 0.5 0.004 0.1 0.015
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Fig. 4. Results of the MCMC calculations. (a) Iterations of the coefficient r are shown by blue dots. The local curvature of
the cost function is shown by the red solid line. (b) Iterations of the coefficient h are shown by blue dots. The local curvature
of the cost function is shown by the red solid line.
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Fig. 5. Results of the MCMC calculations. (left) Convergence of the unknown predator trajectories from an initial guess (solid
black line at the bottom of the figure) to the actual trajectory (solid blue line at the top of the figure) is shown by dashed red
lines. The arrow indicates the direction of convergence as a function of number of iterations. (right) The changes of the cost
function at each iteration step corresponding to (left) and Figure 4 are shown by the black circles.

This fact considerably simplifies the MCMC calculations
of hidden dynamical variables (cf [11,12]). The initial val-
ues of the model parameters are drawn using uniform
distributions from intervals (see Tab. 4) that overlap with
and extend the field-study-based estimations of ecologi-
cal parameters shown in Table 1. Once the parameters
are known, the initial guess for the trajectory is found
using (15). The initial guess for the predator trajectory
is shown by the full black line at the bottom of Figure 5

(left). A Gibbs sampler is used to update the trajectory.
At each step k the new coordinate xk is drawn sequentially
from the distribution p(xk|xk−1, xk+1,M̃, D̂, σobs, yt) us-
ing M-H algorithm. For a given set of model parameters
the trajectory is updated a number of times to achieve
local convergence. Once the trajectory is updated, new
model parameters are drawn from the posterior distribu-
tion using M-H algorithm. These steps are repeated until
global convergence is achieved.
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To improve the convergence we:

(i) keep parameters within the box of values specified by
the initial range for each parameter shown in Table 4;

(ii) scale the noise of the MCMC simulations by a factor
proportional to the curvature of the cost function for
each parameter;

(iii) increase the number of trajectory iterations up to 20
at each MCMC step.

Examples of the convergence of the model parameters are
shown in Figure 4. The convergence of trajectories is il-
lustrated in the Figure 5 together with the dynamics of
the cost function. The estimates of the parameter values
obtained in these simulations are shown in Table 4.

6 Conclusions

In conclusion, we have considered the problem of dy-
namical inference of latent state variables and parame-
ters of nonlinear stochastic dynamical models, and done
so for the extreme case of missing data, when an entire
trajectory is missing. As an example of how to solve a
long-standing ecological problem, we inferred an unob-
servable predator trajectory, and parameter values, for
a predator-prey model by analysis of measurements of
the prey dynamics that were (as is typical) corrupted by
noise. We proposed a solution of this problem based on the
MCMC method with a Gibbs sampler and M-H steps to
draw parameters from non-Gaussian distributions. This
solution extends earlier results [11,12] obtained for one-
dimensional maps to multidimensional flows for the case
when only partial information about the system dynamics
is available. To obtain an initial guess for the model pa-
rameters and unobservable predator trajectory, we intro-
duced a one-dimensional approximation of the predator-
prey model, neglecting the noise in the predator dynamics.
It was shown that the MCMC method converges both in
the state space and the parameter space. The work is still
in progress and can be further improved in a number of
ways. In particular, information about the gradient of the
cost function can be included in the MCMC simulations.
As an immediate extension of this work, we plan to apply
our results to an analysis of the population dynamics of
small rodents in Finnish Lapland [3,6,7]. Details of this
analysis will be published elsewhere, but the preliminary
results are very promising and indicate that the methods
developed in the present research can successfully infer
both hidden dynamics of the predator populations and
the unknown model parameters from the time-series data
of prey dynamics observed [3] in Kilpisjärvi, 1952-1992.

We emphasize that the results obtained are of impor-
tance across many disciplines. As discussed in the Intro-
duction, the method will also be applicable wherever simi-
lar situations arise, including scientific contexts as diverse
as molecular motors [9] and aerospace applications [26].
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