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Abstract. A great many systems can be modeled in the non-linear dynmucal systems framework, 
as i = f ( x )  + { ( t ) ,  where f() is the potential function for the system, and 5 is the excitation 
noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis 
coefficients. A more challenging problem is to determine the set of basis functions that are required 
to model a particular system. We show that using the Bayesian Information Criteria @IC) to 
rank models, and the beam search technique, that we can accurately determine the structure of 
simple non-linear dynamical system models, and the structure of the coupling between non-linear 
dynamical systems where the individual systems are known. This last case has important ecological 
applications. 
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INTRODUCTION 

Many natural systems can be modeled as noise-driven nonlinear dynamical systems. 
The classic example is the Lorenz system [l], intended as a simplified representation 
of climate variables. Other examples are the human cardiovascular system [2], where 
the heart-lung oscillations show physiologically important couplings, and predator-prey 
interactions, where one predator species feeds primarily on a singlc prey species, but 
WIU, when necessary, feed on others [3]. These last two are examples of an important 
class of problem where it is the coupling between subsystems which is of scientific 
importance. 
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A non-linear dynamical system is typically modeled as evolving according to 

where f(x) is the system’s potential field, and 5 ( t )  an additive noise process that drives 
the dynamics. The objects of inference are Lhe field, f(x), and the inmsity of the mise. 
A number of methods have been developed for these tasks. Deterministic methods fail to 
give accurate parameter estimates in the presence of noise [4]. A method was developed 
in [5] which was termed a maximum likelihood estimator, but was derived from an ad- 
hac cost function. A Bayesian approach was formulated in [6], however this relied on 
MCMC, and so is ton c~mputathxi!!ly ir,tessive w b t ~  :he sE,icixre of f(x) niust also 
be determined, as is the case here. A different estimation framework was suggested 
in [2, 71 that uses a path integral approach to derive a closed form expression for 
the parameter estimates. This method dramatically speeds up the convergence of the 
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inference process and makes it extremely stable to a large levels of dynamical noise 5 (t). 
We use the parameter estimates obtained via this method together with the Bayesian 
Information Criteria (BIC) [SI to estimate the structure (in terms of basis functions) 
of f(x), using Beam Search, a non-complete search algorithm quite well known in the 
artificial intelligence community, but with little exposure in the Bayesian modeling field. 
Finally, we present a number of examples of learning the structure of unknown non- 
linear dynamical systems and the coupling between known systems. 

PARAMETER ESTIMATION FOR NON-LINEAR DYNAMICAL 
SYSTEMS 

An N-dimensional non-linear dynamical sys tem evolves according to equation 1, and is 
observed at times tk to give a time-series Y = { ( t k , y k ) ;  k = 0 : K } .  We assume that the 
observation noise is negligible compared with the excitation noise 5 ( t ) ,  hence Yk = xk. 
Following the approach of [2,7], we parameterize the potential field as 

f(x) = U(x) c = f(x; c) 

where U is an N x M matrix of basis functions and c an M-dimensional vector. In this 
way we convert the problem of estimating a nonlinear f(x) into a problem that is linear in 
the parameters. We assume the excitation noise, 6 ( t ) ,  is stationary, white and Gaussian, 
and hence characterized by its covariance matrix, D. 

The posterior distribution of interest is 

P(C>DIP) OC P (9 IC, D)P(C)P(D) 

where independent priors have been assumed. We use a diffuse Gaussian prior on the 
elements of c and a uniform prior on the elements of D. The likelihood can be written in 
the form of a path integral over the random trajectories 

P(WC,D) = /xiff)P(91z)i71x(t)l  X k  1 W t ) ,  

where X = {x(t)} and t, << to < t~ << ff so that the likelihood does not depend on the 
initial and final states. The probability functional 9[x( t ) ]  is determined by the properties 
of the excitation noise < ( t )  [9, 101. Under the assumption of negligible observation 
noise, the log-likelihood is 

h K-1 2 
K --1ogp(glc,D) = lndetD+ [ tr&(yk;c) 

k=O 



and 

where C p r  and k p r  are the mean and covariance of the prior on c,  Uk = U(yk) and the 
components of vector v(x) are: 

We find the MAP estimates by alternately optimizing for D assuming c is known, and 
then for c assuming D is known. The maximizations can be done analytically, giving . 

and 

Further details are given in [7]. 
2 = 3-l (D) W(D). 

STRUCTURE ESTIMATION USING BEAM SEARCH AND BIC 

In general, which basis functions to include in U(x> will be unknown. Sometimes the 
type of basis function will be known from physical considerations (see later), but often it 
will be necessary to use a very general basis. In this case it is important to determine 
which of the basis terms are required to model the system. A very general basis is 
the Volterra expansion [ll], where V ( N 7 k )  is an expansion up to order k of an N -  
dimensional vector. For example 

, 

v (3 7 2)  = { 1 7 x1 72]  x3 7 .: I XlX2 7x1 7x3 74 ,?2 7 x3 7 41. 
A model, 4, is then specified by which of the basis terms are included. 

The formal Bayesian solution is to compute the integrated Ilkelihood, or evidence, 
p(&[$Y).  In practice, for large datasets, the BIC can provide a good approximation [SI, 

where Nm is the number of terns in model 4. In either case the search is over ZNtn 

models, and it rapidly becomes impossible to examine all models to find the model 
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FIGURE 1. (left) Simulated trajectory from the Lorenz attractor. (right) Simulated trajectory from the 
system with the xf term included in the equation for i3.. 

with the highest BIC score. Instead, some non-exhaustive search must be used, with no 
guarantee of finding the optimum model. Instead, we hope to choose a search technique 
which returns a good enough model in an acceptable length of time. 

Beam Search 

Beam search is a heuristic where a set of models (the "beam") are maintained at 
each step, and it is hoped that the diversity of models retained will allow the algorithm 
to escape from local minima. Applied to the non-linear dynamical system structure 
learning problem, the beam search algorithm is as follows: 

1. Choose the size, N E ,  of the beam (the number of models to retain at each step). 
2. Index the models by a binary vector. 
3. Put models 1.. .NO on the beam and compute the BIC for each model. 
4. For each model on the beam 

flip the next bit 
compute the BIC 

5. Of the ~ N B  models now under consideration, keep the best NB. 
* 6. Goto 4, until all bits have been flipped 

Instead of examining 2N,n models, this algorithm examines Nm x NB. It is often useful to 
randomize the order in which the basis terms are added to each of the beam entries, to 
give a better exploration of the search space. 

Results for the Lorenz Attractor 
* 

The Lorenz attractor is a three dimensional system governed by the equations 



I TABLE 1. Frequency of inclusion of each 
basis term in 100 repetitions. 

21 XI x2 
100 100 

x2 X I  x2 x3 
100 100 100 

23 1 x2 x3 x: XLX2 4 
6 5 94 100 100 6 

where o = 10, T- = 28 and b = 8/3. A sample trajectory is shown in figure 1 for h = 0.005 
and the variance of the excitation noise being 0.001. A suitable basis for this system 
is the V(3,2)  basis discussed above. This has 10 terms for each of the 3 dimensions, 
resulting in a search over 230 2 lo9 models. Using beam search with a beam of size 
16 results in fewer than 800 models being examined. The algorithm was run 100 times, 
using 5000 data points generated from the Lorenz system with a random initial start 
point, after 2000 data points were ignored to ensure that the trajectory had converged 
to the attractor. The frequency of inclusion of each term in the model is shown in table 
1. Apart from the x3 term in the equation for X3, which was included 94% of the time, 
the other correct terms were always Included. In b e  equation for & the term 4 was 
also always included incorrectly. Typically the value of the coefficient for this term was 
-0.04, which is an order of magnitude smaller than the smallest of the other coefficients. 

Figure 1 (right) shows data simulated f?om the system with the 4 term included in 
the equation for i 3 .  Even with the extra term it is in good qualitative agreement with the 
data in figure 1 (left). 
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Coupled Lorenz Attractors 

in many applications the system of interest is constructed by coupling together a 
number of simpler systems, where each of the simpler systems is either well known 
or can be studied in isolation. In these cases it is h e  structure of the coupling between 
the systems that is of interest. 

In [l2] the authors studied a system of three coupled Lorenz attractors. Inspired by 
their sys tern, we modify the second equation in each oscillator to be 

where 21 is the XI component from the previous oscillator (in a circularly coupled man- 
ner). Figure 2 shows a simulation of this system with c = 28. To model this system with 
no knowledge of the underlying Lorenz attractors would require the use of the V(9,2) 
basis, which has 55 terms for each dimension, a total of 495. A search over a space 
this size is infeasible, Instead, we s c z h  o d y  over &e coupling becween osciiiators, 
including in all models the terms known to be included, and excluding terms that are 
completely within a single oscillator that are not in the Lorenz equations. This reduces 
the search space clown to 54 terms. 
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FIGURE 2. Simulation of the system of three coupled Lorenz oscillators 

The estimated equations using the data in figure 2, and a beam of size 128 are 

where the terms not in the original equations are in parentheses. 

PREDATOR-PREY SYSTEMS 

The structure of predator-prey interactions in natural ecosystems is of great ecological 
interest. The structure can reveal which prey species are chosen preferentially by which 
predator species, and changes in this structure can be indicative of changes in the 
ecosystem due to external factors. 
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FIGURE 3. Synthetic data from a system descrlbing three coupled predator (bottom) - prey (top) pairs 

A multidimensional 2-&ope predator-prey system can be modeled as 

where P, are the predators and Hi ;"le prey. We assume the same number of predator 
species as prey species, and that predator P, preys predominantly on a single prey species 
H,. The remaining interactions, specified by the sparse matrices Ctij and pij, are weak. 
Also aii = pii = 0. For this system we have also the constraint h t  fer red i~m,  if a;, = 0 
then so does Pij; if species P, preys on Hi, then shows some increase in quality of life. 

Equations 2 and 3 are not in the form of equation 1, so we make the transformations 
Xi = lnHi and E = he, giving 

The Volterra basis used in the earlier examples is not suitable here. Instead, we construct 

system of three coupled predator-prey pairs. Table 2 shows the system of equations used 
to generate this data, and also the frequency of inclusion of each term in the estimated 
model for ten data sets generated with different initial conditions. None of the terms not 
represented in table 2 was included in any of the estimated models. 

a basis of terms of the form expXi and *. ex Y. Figure 3 shows synthetic data from a 
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TABLE 2. Frequency of inclusion of each basis term in 10 repe- 
titions. 

ex Y x, = 8 -0.14expxl -0.09,,+~x;,L 
10 10 10 

X 2  = 20 -0.26expX2 +0.0820+~xpS2 ex Y, -2.520+~xpx2 y2 

10 10 3 10 

= -0.8 +0.06expXl 
10 10 

Y2 = -1.25 +O.OlexpXl +0.05expX2 

Y3 = -1.1 +0.02expx2 +0.05expx3 
10 3 10 

10 7 10 
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CONCLUSIONS 

We have presented Bayesian inference methods for the potential of a non-linear dynam- 
ical system when the potential is described in terms of basis hnctions. We have shown 
that the search method known as “beam search” can be applied with BIC as the scor- 
ing function to the problem of determining which of the basis terms are required for a 
particular system. We have presented examples representative of an important class of 
system, and demonstrated reasonable performance in those cases. 
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