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Abstract
A spacially extended model of the collective behavior of a large

number of locally acting organisms is proposed in which organisms
move probabilistically between local cells in space, but with weights
dependent on local morphogenetic substances, or morphogens. The
morphogens are in turn are effected by the passage of an organism.
The evolution of the morphogens, and the corresponding flow of the
organisms constitutes the collective behavior of the group. Such models
have various types of phase transitions and self-organizing properties
controlled both by the level of the noise, and other parameters.

The model is then applied to the specific case of ants moving on a
lattice. The local behavior of the ants is inspired by the actual behav­
ior observed in the laboratory, and analytic results for the collective
behavior are compared to the corresponding laboratory results.

It is hoped that the present model might serve as a paradigmatic
example of a complex cooperative system in nature. In particular
swarm models can be used to explore the relation of nonequilibrium
phase transitions to at least three important issues encountered in ar­
tificial life. Firstly, that of emergence as complex adaptive behavior.
Secondly, as an exploration of continuous phase transitions in biolog­
ical systems. Lastly, to derive behavioral criteria for the evolution of
collective behavior in social organisms.

1 Introduction

1.1 The appeal of swarms

The swarming behavior of social insects provides fertile ground for the ex­
ploration of many of the most important issues encountered in artificial life.
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Not only do swarms provide the inspiration for many recent studies of the
evolution of cooperative behavior[6, 19,20], but the action of the swarm on a
scale of days, hours, or even minutes manifests a near constant flow of emer­
gent phenomena of many different types[l, 2, 8, 11, 14, 17,26,27]. Models of
such complex behavior range from abstract cellular automata of models[21]
to more physically realistic computational simulations. [7, 12] The notion
that complex biological behavior, from the molecular to the ecological, can
be the result of parallel local interactions of many much simpler elements
is one of the fundamental themes of artificial life.[21] The swarm, which
is a collection of simple locally interacting organisms with global adaptive
behavior, is a quite appealing subject for the investigation of this theme.

When one includes an evolutionary dimension the appeal becomes even
more robust, since we have, in many ways, a much better notion of the
ultimate purpose or utility of insect behavior than we have of many other
types of emergent phenomena in nature. The notion of utility provides a link
between the emergent behavior of swarms, and the evolution of cooperative
social behavior.

An additional impetus to this type of study which is lacking in many
areas of artificial life research is the contact with experiment so necessary for
the healthy growth of science. By this I mean not just computer simulations,
but actual work with real organisms.[l, 8, 26] In many ways the physical
motivations behind the types of models discussed here are inspired by such
experiments. The knowledge that many kinds of controlled investigations
can be performed on systems which closely resemble the models described
here not only informs the interpretation of the results, but suggests new
types of laboratory studies.

In the end perhaps the most pervasive appeal of swarms centers on a
kind of emotional attractiveness of the subject. Undoubtedly all of the
above considerations playa role in this, but probably the main reason is
hidden within in the human psyche. More than a paradigm, swarms are
almost, at times, an archetype.

1.2 Basic principles of swarm intelligence

It is useful to list some broad behavioral categories which might be classified
as collective intelligence, or swarm intelligence. These may be thought of as
evolutionary principles of selection, and are not intended to be definitive.

The first is the proximity principle. The group should be able to do
elementary space and time computations. Since space and time translate
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into energy expenditure,[29] the group should have some ability to compute
the utility of a given response to the environment in these terms. Computa­
tion is understood as a direct behavioral response to environmental st-imuli
which in some sense maximizes the utility to the group as a whole of some
type of activity. Although the kinds of activity may vary greatly, depending
on both the type and complexity of the organisms, some typical activities
include the search and retrieval of food, the building of nests, defense of
the group, collective movement, and in the case of higher organisms, the
interaction necessary for many social functions.[17]

Second is the quality principle. The group should be able to respond
not only to time and space considerations, but to quality factors, for in­
stance, to the quality of foodstuffs or safety of location.

Third is the principle of diverse response. The group should not
allocate all of its resource along excessively narrow lines. It should seek to
distribute its resources along many modes as insurance against the sudden
change in anyone of them due to environmental fluctuations. It is clear that
a completely ordered response to the environment, even if possible, may not
even be desirable.

Fourth is the principle of stability. The group should not shift its
behavior from one mode to another upon every fluctuation of the environ­
ment, since such changes take energy, and may not produce a worthwhile
return for the investment. The other side of the coin is the principle of
adaptability. When the rewards for changing a behavioral mode are likely
to be worth the investment in energy, the group should be able to switch.
The best response is likely to be a balance between complete order, and
total chaos, and therefore, the level of randomness in the group is an impor­
tant factor. Enough noise will allow a diverse response, while too much will
destroy any cooperative behavior.

The behavior of many complex adaptive systems would probably fall
into some ve,rsions of these principles. It is amusing to note the resemblance
of these rules to many good economic decision making principles, or folk
maxims like time is money, only buy the best, don't put all your eggs in one
basket, better safe than sorry, a bird in the hand is worth two in the bush,
invest for the future, etc.[13]

1.3 Inspiration: the behavior of real ants

The techniques used in some recent experiments with ants[7, 8, 14, 26] in
many ways inspired the approach used here. Typically, ants in the labora-
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Figure 1: The binary bridge experiment.

tory are exposed to a set of bridges connecting two or more areas where the
ants explore, feed, and go about their business. As the ants wander they dis­
cover and cross the bridges. As they move on the effectively one-dimensional
paths they come to junctions where they choose a new branch, and continue
on their way. Figure 1 shows a picture of what such a bridge might look like.
Since the ants both lay and follow scent as they walk, the flow of ants on the
bridges changes as time passes. For instance, in the case shown above, most
of the flow will eventually concentrate on the one of the branches. In this
case the swarm is said to have chosen a branch of the bridge. The types of
emergent behaviors of the ants can then be studied in a controlled manner
by observing their response to various situations. In addition, many inter­
esting mathematical models and computer simulations have been studied
which capture some of the behavior observed in the laboratory[l, 7, 27].

The experimental results indicate the type of environmental, or emer­
gent computation real ants perform. The term environmental compu­
tation here again refers to the fact that the ants collectively perform in­
formation gathering and processing on the local environment. Both the
information gathering and processing happen simultaneously, and without
centralized oontrols. For example, both the location of a food source and its
utilization are computed by the self-organization of a column of ants between
the nest and the food source. These experimental observations form a basic
set of tasks any model needs to explore. The following results were obtained
using a few different species of ants[8, 14, 26J.

1. When ants are exposed to two paths of unequal length the ants will
choose the shortest path.

2. If a shorter path is offered after the ants have chosen, they are unable to
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switch to the new path.

3. The ants will break symmetry and chose one path, even when both paths
are equal.

4. If ants are offered two unequal food sources they will usually choose the
richest source.

5. If a richer food source is offered after the ants have chosen, some species
can switch to this new source, and others are unable to.

6. If two equal food sources are offered the ants exploit the source unequally,
breaking symmetry.

In addition, the rules for the effect of the pheromone density on the
motion of the ants can be determined experementally from a setup such as
the one pictured in Figure 1. It has been found from such experiments that
ants choose a branch of the bridge in proportion to the function (ex + u)i3,
where u is the density of pheromone on the branch measured in unit of
the average density layed down on passage of a single ant, and ex is a fixed
parameter with the same units. f3 is some dimensionless fixed parameter.
For one type of ant, the argentine ant, values of ex = 20 and f3 = 2 were
obtained.

1.4 Goals

The collective behavioral characteristics of a group of organisms must, of
course, be encoded in the behavior of the individual organisms. We will
be interested in how the collective behavior is encoded by the individual
behavior. In particular, we explore the idea that complex adaptive behavior
is the result of the intemctions between organisms as distinct from behavior
which is a direct result of the actions of individual organisms.,

In line with the ideas proposed above, the most important modeling
constraint in what follows is the principle of locality. In the models
we will study the behavior of the individual organisms will be determined
solely by local influences. This means that the individual organisms will not
have any memory, non-local navigational skills, or any type of behavior that
involves storage of internal information. Any information flow must then be
a product of the collective behavior. Wilson[32J introduced the concept of
mass communication to designate information transmission which cannot be
communicated by the individual. Here we extend the designation to include
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transmission of information the individuals can not even possess. Of course
the actual situation in nature will almost always be more complicated than
this, but we may hope to achieve some level of understanding by studying
such restricted models, and comparing them to real situations. In this way
it may be possible to isolate may of the collective emergent processes which
are taking place.

1.5 Preview

In section 2 the swarm network model is presented, and its analogy with
other connectionist models is discussed. We show that the distribution
of organisms on the network always relaxes, on the short time scale, to
a unique stationary distribution which is independent of the initial configu­
ration. This allows us to write down the general deterministic learning rules
for the network. In section 3 we introduce a type of dynamics, inspired by
experiment, which allows us to make an analogy with a thermodynamic sys­
tem. The quite general conditions for self-organization (symmetry breaking)
are derived, and the various attractors and phase transitions of the swarm
network system are explored. In section 4 a specific model of ant swarms
is presented. The behavioral function of the ants is taken from the experi­
mental results, and a theoretical model. I will particularly focus on the role
of phase transitions, which are of relevance to the study of artificial life in
at least three important ways. The first and most obvious role is that phase
transitions control the global behavior of the swarm. In section 5 a few sim­
ple cases are compared to the observed behavior of ants in the laboratory.
Secondly, since it has recently been suggested[22] that second order phase
transition might have an important influence on the complex adaptive, and
computational properties of biological systems, these transition are worthy
of study in their own right. Here we provide an example inspired by real­
life biology \jlhich can be studied. Finally, not all possible phase transitiosn
have signiflcance on a behavioral level. Phase transitions on variation of the
behavioral parameters of the organisms, which are fixed on the behavioral
time scale, can provide evolutionary criteria for the development of cooper­
ative behavior in social organisms. We thus hope to illuminate this issue as
well.
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2 Swarm networks

In this section we present the basic structure and dynamics of swarm net­
works. The dynamics of the organisms is discussed, and the deterministic
learning rule for a swarm is derived.

2.1 Connectionist models

Connectionist models[9] have three basic earmarks. Firstly, their structure
consists of a discrete set of nodes, and a specified set of connections between
the nodes. For example, neural networks, the archetypal connectionist sys­
tems, are composed of neurons (nodes), and the neurons are usually linked
by synapses (connections). Secondly, there are the dynamics of the nodal
variables. In the case of neural networks the nodal variables are the fir­
ing rates of each neuron. The dynamics are controlled by the connection
strengths, and the input-output rule of the individual neurons. The dynam­
ics of the whole system is the result of the interaction of all the neurons.
Lastly there is learning. In its most general sense learning describes how
the connection strengths, and hence the dynamics, evolves. In general there
is a separation of time scales between dynamics and learning, where the
dynamical processes are much faster than the learning processes.

In addition to neural networks there are many other type of connectionist
type models, such as Autocatalytic chemical reactions, Classifier systems,
and Immune networks[10, 28], to mention just a few. Swarm networks are
just another such example.[24]

2.2 Network structure

The structure of the network is a representation of the physical space on
which the organisms move, and possibly of certain environmental factors
and constramts. In this paper we will not seek detail on arbitrarily small
scale, but will divide the physical space into discrete elements, or nodes,
which will be labeled by an index i = 1, ... ,m. In certain cases this dis­
cretization may be a natural refiection of the actual physical setup of a
laboratory experiments such as those discussed above, or another naturally
occurring discrete structure such as an existing network of path segments.
In other cases the discretization may represent a more abstract division of
the physical space. For instance, positions on a plane may be divided up into
a chess board of discrete cells. Additionally, each discrete position in space
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might have additional discrete divisions representing the possible orienta­
tions of an organism at that point. Each discrete position and orientation
will be specified by a single node. A network is then a kind of discretized
phase space on which the organisms move.

In addition to nodes, we must specify connections. Connections express
the possibility of an organism moving from one node to another, and are
specified by an ordered pair of nodes, one of which is the initial node, and one
of which is the final node. Obviously, most transitions will not be possible.
The set of possible final nodes for an initial node are said to be the nodes
local to the initial node.

Lastly we must specify boundary conditions on the network. These will
take the form of adsorbing sites, and input sites. Adsorbing sites are
nodes from which an organism may leave the network entirely. Input sites are
nodes which receive an input of organism from the world outside the network.
For the purposes of this paper we will consider only closed networks.

2.3 Dynamic and parametric network variables

A number of organisms will be allowed to move on the network. Most of
what follows can easily be extended to the case where there are a number of
different types of organisms, but for simplicity we will only deal with the case
where there is one type present. Each node has a given volume or measure,
fJ,i, with units depending on the dimension of the nodes. We will denote the
number of organisms at node i at time t by ni(t), so the density of organism
at i is pi(t) = ni(t)/fJ,i.

In addition there is a quantity of a morphogenetic substance, or mor­
phogen, at each node. I have adopted this terminology from Turing's famous
paper, The Chemical Basis of Morphogenesis[30], where the term is taken
to indicate form producer. While in the present case there is not a one­
ta-one relationship with Turing's morphogen concept, the basic idea is the
same. The term is adopted mainly to avoid the misunderstanding that the
processes modeled here depend on any specific realizations or mechanisms.
Much of what follows has quite wide applicability.

The density of morphogen on node i will be denoted (Ji. We will for sim­
plicity consider the case where there is only one type of morphogen present.
This may be thought of as chemical substance which the organisms both
emit, and respond to, but it is possible in certain circumstances it might
have another physical meaning. For instance, such networks could model
the formations of animal trails, or routes in the undergrowth. The density
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of plant growth at a given point would be the analogous to a morphogenetic
substance. The route that animals take while moving from place to place
is influenced by the density of undergrowth. In addition, the undergrowth
is affected by the passage of animals, which tend the crush young plants,
and otherwise impede the growth in that area. One might expect the result,
over time, to be the formation of trails. This type of consideration is also
know to playa role in the formation of more or less permanent network of
physical trails by insect colonies.[17)

pi and (Ji are essentially the dynamical variables of the model. However,
we can, if we wish, make a distinction between dynamical variables, and
parametric variables under certain conditions. For practical purposes we
will assume that the (Ji are more or less constant for time scales typical of
the variables pi. We will then treat the (Ji as parameters which determine
the dynamics of the pi. The pi are said to be slaved to the (Ji. They are para­
metric variables because they are endowed with a dynamics of their own.
This dynamics is usually known in connectionist terminology as learning.
This separation of time scales, and the resulting distinction of dynamic ver­
sus parametric variables is a common theme running through connectionist
theories. For some types of behavior we may not be able to strictly sepa­
rate time scales, but we will view these situations as complications on the
base of a model where the time scales are well separated. In fact, it is the
passage of the swarm through a supercritical point of its global dynamics
which makes possible the amplification of small nonequilibrium signals, such
as time delay feedback.[S] A good example of this will be our analysis of the
choice of a closer food source in section 5.

In addition to dynamic and parametric variables, there will also be fixed
parameters which can be considered constant on both dynamical and learn­
ing time scales. The network will possess certain parameters such as the
measure of each node, /Li, or the orientation of each node at the junction
if we are mo,lieling a network of paths. In addition the organism may have
internal parameters which determine their response to, and emission of, the
morphogenic substances. The choice of these parameters by natural selec­
tion may be considered an additional type of dynamics of the system. Lastly,
there may be one or more parameters which describe the evolution of the
parametric variables, such as the decay rate of the morphogen.
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2.4 Dynamics: the flow of organisms

In addition to reacting to the morphogens, the organisms may in general
interact with each other. For the purpose of this paper we will consider
situations where the organism do not interact directly, but only through
the medium of the morphogenetic substance. In this case the the flow on a
network is described by

dpi ( . .) .. .
Midi = I:; VOWijpJ - VOWjiP' - voa'p' +1',

J

(1)

where Wij is the probability that organisms leaving nodej will choose node i,
and ai is.an adsorption probability, that is, the probability that organisms
leaving i will leave the network entirely. Vo is a rate constant which can
be thought of as the speed of the organisms. The left hand side of the
equation is just the rate of change of the number of organisms on node i.
The first term on the right hand side represents the flow of organisms into
the node from all of the connecting nodes. The second term is the flow out
of the node to all the local nodes. The third term represents the loss of
organisms to the outside world at an adsorbing site, and the last term is
the number of organisms entering node i per unit time from some outside
source. Clearly Wij, ai,ji(t) ~ o. Additionally, probability considerations
lead to the following restriction,

ai +I:;wji=l,
j

(2)

which can be read as, the probability that an organism on node i goes
somewhere is one. The Wji will generally depend on the parametric variables,
and also on the fixed parameters of the network, and ai and J' may be taken
to be fixed, .()r given some special dependence on the parametric variables
depending on the situation we are trying to model.

The distribution of organisms on the network described above in nearly
all physically reasonable situations relaxes to a stationary state which is
independent of the initial distribution. The state is known as a stationary
state because the distribution is constant in time. Since in general the flow
of organisms at any given point on the network does not vanish, the state is
not an equilibrium state. The more specific case of equilibrium states, and
the conditions necessary to produce them will be discussed in detail in the
next section.
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(3)

(4)

2.5 Learning: the parametric dynamics

The learning rule is a prescription for the way the morphogen distribution
changes with time. It is not arbitrary, but depends on the details of the
mechanism by which the morphogens evolve. For our purpose we will make
use of the following simple, and sensible rule. As time passes, the morphogen
density decays in proportion to the amount present with decay rate 1'>. In
addition, each organism at i lays down a density 71i of the morphogen as it
passes a point. The evolution of the morphogen distribution on the network
is then described by the equation,

du i
i i

dt = -I'> (J +71i P ,

where (Ji is the density of the morphogen on node i, and pi is the density
of organism on node i. The Eqs. (1) and (3) then completely describe the
dynamics once the dependence of the Wij on the (Ji is specified.

As discussed before, we will make the assumption of separation of time
scales. In this case the flow of organisms relaxes to a stationary state on
time scales short compared to the typical times scales of Eq. (1). The
deterministic approximation then consists in replacing the pi by their
stationary values p~(lT) and in ignoring the fluctuations about these values.
This leads us the the generalized learning rule for a swarm network

d(Ji . .
dt = -I'> (J' +71i p~(lT).

It is of interest to note that even though we have strictly local couplings
between nodes, the learning rule is a globally coupled system of equations,
since p~(IT) depends in a complicated way on the parametric variables (Ji.

This is made possible by the separation of time scales. On the dynamical
~

time scale the system feels out its entire space of configurations, and relaxes
to a state which is determined by global considerations, even though the
dynamics is strictly local. This globally determined state then determines
the dependence of some of the variables in the local learning rule. Globally
coupled parametric dynamics in strictly local models via separation of time
scales is an important aspect of connectionist models, and is one of the
central reasons why connectionism is such an attractive model of adaptive
complex systems.
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3 The thermodynamic analogy

3.1 Detailed balance and the thermodynamic analogy

For the rest of this paper we will consider the case where the transition
matrix takes the form Wij ex f (O"i) D.ij, where f is some weighting function
describing the effect of the O"i on the motion of the organisms, and D.ij = 1 if i
connects to j, and zero otherwise. When properly normalized the transition
matrix is given by

f( O"i)D.ij
Wij = '£d(O"k)D.kj' (5)

Transition matrices of this type obey the detailed balance relations Wij f (O"j) =
wj;f(O"i). The property of detailed balance allows us to determine all the
statistical properties of the quasi-stationary particle field. In addition a
one-to-one analogy with a thermodynamic system with energy U(O") and
temperature T = /3-1 can be made if we set f(O") = exp (-/3U(O")), where
any parameter T whic!l affects f can be regarded as a temperature param­
eter if f(O";T) scales like f(O";a T) = f-"(O";T). Statistical quantities of
interest can then be calculated from the one-particle partition function

z = ~ 2:I"iexp (_/3U(O"i))
•

(6)

according to the usual prescriptions,[18] where V is the total volume of the
system. The N-particle partition function is ZN = ZN

Let us partially evaluate the partition function over the volume 1", of the
network with a given energy E,

(8)

(7)Z = ~ 2:l"iexP(_/3U(O"i)) +~ exp(-/3E).
U#,

The mean equalibrium particle density in the energy state E is then given
by[18]

3.2 The order parameter equation

The equations for the pheromonal field densities can be written

dsi . .
dr = _so - p~(s), (9)
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where we have introduced the new variables T = K t, and si = KU
i /1). We

have adiabatically eliminated the organisms from the picture by replacing
pi with p~. We introduce the bimodal variables

(10)

where, = N /V is the mean density of organism on the network, and

(11)

We will make use of the mean-field approximation Si = s±, which leads to
the mean-field bimodal equations

ds+ ± ± (+ _)
dT = - S +Pe s , s . (12)

The quasi-stationary distribution p~(s+, s-) is calculated from the master
equation for the particle density. In the case of a closed systems with detailed
balance

±( + _ _ N olnZ
Pe s , s ) - - f31'± OE± . (13)

It will be helpful to introduce the dimensionless parameter v = 1'-/1'+,
the ration of the volume in the - state to the volume in the + state. For
compactness we also define the function

(14)

The equations can then be put in the form

ds+ _ + ,(1 + v)Ril
dr --s + v+Ril ' (15)

ds- = _ s- + ,(1 +v). (16)
dr v +Ril

Instead of working in the variables s± we will chose the new order parameter
variables

(17)
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(18)

The second of these is proportional the difference between the total density of
pheromone present and the value at which the total denity of pheromon equi­
librates. The equation for the evolution of 8 is given by d8/dr = -8, which
has solutions s ex: CT. No self organization will occur until the pheromone
density has built up sufficiently. Thus the pheromenone density will initially
evolve uniformly over the configuration space, there will be little feedback,
and m will will be small on time scales where 8 -> O. We can thus make the
adiabatic approximation 8 = O. The deterministic equation for the order
parameter m is then given by

dm
dr = -m +F(m),

where
Rf3 - 1

F = 7(1 +v) Rf3 +v'

and where the F is determined as a function of m by

(19)

(20)R(m) = R(7+ IV m '7-~)'+v 1 +v

In addition the longtime evolution of the order parameter will only depend
on the longtime limit 8 -> 0 and is not affected by the validity of the adia­
batic approximation.

The deterministic dynamics is then described by the equation

~~ = - \If'(m),

where the deterministic potential \If(m) is given by

1 1m
\If(m) = 2m2 - F(x) dx.

3.3 Phase transitions

(21)

(22)

We will be interested in the various phase transitions in the collective behav­
ior of the swarm. These are the points where the behavior changes abruptly
upon variation of some parameter. As mentioned earlier, these points de­
termine the behavior of the swarm when the parameter that is varied is an
external one. In this case the basins of attraction of \If will determine the
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(a)

Some Parameter

(b) (e)

Figure 2: A phase transition.

behavior of the swarm, so a phase transition represents a behavioral tran­
sition. Phase transitions are also significant in establishing evolutionary
criteria when the parameter wltich is varied is a ji;J;ed behavioral parameter.

The values of the order parameter mk are determined from the condition

(23)

and their stability by
(24)

That is, by the the minima of W. When a parameter is varied, the shape
of W varies. A phase transition occurs when there is a transition, such as
the one shown in Figure 2 from one type of shape to another. In this case
the various macroscopic states of the swarm may change in an abrupt way.
The point of phase transition is known as a critical point, illustrated by the
shape in Figure 2(b).

To include some basic terminology, we usually distinguish two types of
phase transitions, first order and second order. First order designates
phase transition where the macroscopic states change in a discontinuous
way upon passage through the critical point, and second order designates
phase transitions where the states change in a continuous way. Second order
phase transitions usually have some kind of symmetry which is broken when
passing through the critical point. Tltis symmetry breaking is caused by the
natural fluctuations in the system wltich we neglected in the deterministic
approach. It is at the critical point where we would expect the fluctuations
to become the most pronounced, and our deterministic analysis to have the
greatest problems.

When a system passes through a second order transition, it may be left
siting at the top of the hill in the center of Figure 2(c). At this point the
system is like a pencil balanced on its end. We cannot tell which direction it
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will fall, but a small perturbation can send it falling in a certain direction.
It is the sensitivity of the system at this point to external influences which
makes them of interest as a kind of information amplifier in biological sys­
tems. Typically, susceptibilities, the quantities which measure the response
of a system to external influence, become infinite at the critical point.

In addition, many macroscopic quantities scale in a characteristic way
near a critical point, according to critical exponents. These exponents
have, in many cases, universal values which are independent of the details
of the given universality class of models being studied.

From conditions 23 and 24 we can determine the stability condition for
the homogeneous state, 8

i = "

1 X(,) < T, (25)

where T = 1//3 is the temperature parameter, and where X is known as the
chemotatic factor, or force X(x) = -U'(x).

4 Ant swarms

4.1 Microscopic ant behavior

The microscopic dynamics of ants can be described by the pheromone energy
function

U(O") = -In (1 +1:60.). (26)

where 0" is the pheromone density, and 6 is a dimensionless behavioral
parameter. [241 The temperature parameter T = 1//3 describes the inter­
nal randomness of the response of the ants to the pheromonal field. This
function is based approximately on a model for Osmotropotaxi (scent gra­
dient following)[3, 4, 5], and on experimental observations of actual ants.[SI
For the case where the density of ants it low, and hence the pheromone den­
sity is low (rr« 1/6), we can make use of the approximate energy function
UO(O") = -In(l +0"). The constant 1/6 will be known as the capacity. When
0" approaches 1/6 the ants respond less accurately to pheromone gradients.

An illustration of this effect is shown in Figure 3. A given current of
organisms I flows into a junction from the left. On the lower branch the
pheromone density is fixed at 0"0, and on the upper branch (J is allowed to
vary. 7(0"), the proportion of the current which flows into the upper branch,
is given by the sigmoidal function

(27)
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The plots on the right of Figure 3 shows T(O') for varying values of {3 and 6.
The upper plot, where 6 is fixed, shows the influence of increasing the tem­
perature (lowering (3). As the temperature increases the threshold response
becomes less and less pronounced. In the opposite limit (3 --> 00, T(O') would
be a step function 8(0' - 0'0)' In this limit all of the ants would choose the
branch with the greatest pheromone density. In the lower plot the noise level
is fixed, and the capacity 1/6 is varied. It is interesting to note that the ef­
fects of decreasing the capacity with fixed temperature are similar to the
effects of increasing the temperature with fixed capacity. When the density
of the ants increases, the pheromone density increases up to and beyond the
capacity, the' qualitative effects on the behavior of the ants is the same as if
the tempemture was increased. This gives the swarm roughly the ability to
modulate its temperature by modulating its numbers.

This can be made more clear by defining an effective temperature factor
IJ(O') through the relation f(O') = exp( -(3Uo(O')/IJ(O')). IJ(O') roughly mea­
sures the effective change in temperature as a function of the pheromonal ­
field when compared to the case where 6 = 0, which correspond to the energy
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function Uo. The effective temperature is then given by ()(iT)T where

In (1+ 1-:5<7)
()(iT) = I ( ).nl+iT

(28)

Fig. 4 illustrates the increase in the effective temperature with increasing
iT for three different values of 8. Since increasing the temperature tends to
decrease stability, we might expect any organized behavior to breakdown
when the number of participants grows too large. It is this ability or the
swarm to self-modify its temperature which allows it, in a sense, to tra-

r

verse its various phase transition boundaries. Such boundaries are of crucial
importance in self-organization and emergent phenomena, and it has been
proposed that the ability to self-organize at or near these boundaries is at
the heart of adaptive, emergent biological systems. [221

4.2 The phase diagram for the swarm

The condition for stability of the homogeneous phase is independent of v as
could be expected, since in the homogeneous phase v does not really exist.
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The critical points of the homogeneous phase are given by

,; = 26(11+ 6) {,6 - 26 - l± J,I12 - 2,6 - 4,68+ I} . (29)

(30)

where y; is the value of , where the symmetric phase becomes unstable
as , is increased, and ,; is the value of , where the symmetric phase
again becomes stable. These critical points themselves are the result of a
bifurcation controlled by 6. This bifurcation only occurs for delta below the
critical point

6<6 =(,6-1)2
• 4,6

When 6> 6. no symmetry breaking is possible, irrespective of ,.
In addition, there is a region of tristability where either the inhomoge­

neous phase or the homogeneous phase are possible. Which is chosen will
depend on the initial conditions, and hysteresis (multiple values of the order
parameter for the same values of the state variables) is possible. For a given
6 this region extends from ,; <, < ,2(v), where ,2 mark the location of a
first order transition. For certain case ,2(v) as a function of 6 can be calcu­
lated analytically, but we will usually have to resort to Newton's method, or
some other numerical scheme. All of this information can be illustrated by
plotting the critical points ,;; and ,2(1) as a functions of 6. The resulting
phase diagram shown in Figure 5 illustrates the regions of symmetric phase,
bistability and tristability.

In general the various inhomogeneous states labled by v will become
unstable at different values of,. In this case we can have a quite complicated
sequence of ordering transitions as , is increased. This ordering can be used
to explore some other experiments on ants, but due to the complexity of the
subject, this discussion is best taken up elsewhere.

4.3 Branches of stability

We can also investigate the behavior of the various branches of solutions
of swarm networks. Figure 6 shows five diagrams, known as bifurcation
diagrams, which illustrate the types of behavior as the parameter, is varied.
A bifurcation point is the point were new stable equilibria come into being,
that is, a phase transition using our terminology.

Figures 6(A-C) represent the case where 6 = O. Figure 6(A) shows the
supercritical bifurcation for v = 1, the symmetric case. Figure 6(B) shows a
subcritical bifurcation for v = 2. Figure 6(C) represents a special case which
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will be discusses in the last section of the paper. It shows a transcritical
bifurcation for the case where the ants choose between different qualities of
food. It is this transcritcality which make the choice of the better quality
food source a more robust aspect of the behavior of swarms than the choice
of a shorter segment, as shown by the experimental results mentioned at the
end of 1.3.

Figures 6(D-E) show bifurcations for two different value of 6. These
should be compared to the equations of state shown in the next section to
get a feel for their significance. Both diagrams are for v = 1. Note that
the homogeneous state in Figure 6(E) becomes stable before the broken
symmetry states undergo a reverse bifurcation and disappears.

Letting T = 1/{3 be the temperature we can illustrate the phase transi­
tion at the critical temperature Tc and the resulting emergence of the order
parameter in Figure 7(a). The critical temperature is given, in terms of the
other parameters by

T. - '"I (31)
c - 1 +'"1+ 26 '"1 +6'"12 +62'"12'

Figure 7(a) is very reminiscent of the magnetization of a substance near its
critical temperature.

We can also plot the order parameter as a function of '"I, or the equations
of state, shown in Figure 7(b), clearly illustrating both the second and first
order transitions.

Very close to the critical points, the order parameter scales according to
critical exponents which are independent of the particular parameters of the
system. we obtain the classical critical behaviors

M ~ IT - Tc 1
1
/

2 (32)

X ~ 1'"1 - '"Icl-1
/
2 (33)

where X = -8M/8'"1 is the suceptibility. Figure 8 illustrates this critical
behavior.

5 A simple example of swarm behavior

As a basic example of how the attractor structure of the model determines
the behavior of a swarm, we will consider the simple cases corresponding
to the binary bridge experiments with ants[8, 14] discussed at the begin­
ning of this paper, and compare these cases to the corresponding laboratory
experiments.
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5.1 Binary node networks

Two two basic types of two-segment architecture are illustrated in Figure 9.
In case (A) Itl i' Jt2 and '71 = '72· In case (B) we let Itl = 1t2, and '71 i' '72,
where we assume, in agreement with experiment, that the ants returning
from each food source lay scent at different rates depending on the quali ty
of the food source.[15, 171

There are four interesting situations which correspond roughly to the
cases (1-6) discussed at the beginning of this paper.

a. Asymmetric double bridge-A with Itl i' Jt2 which models cases 1 and
2.

b. Symmetric double bridge-A with Itl = 1t2, which models case 3.

c. Asymmetric food sources-B with '71 i' '72, which models cases 4 and 5.

d. Symmetrical food sources-B with '71 = '72 which models case 6.

These cases have all been previously explored experimentally, both with
actual ants, and with some simple computer simulations.

For this analysis we set {j = 0 and (3 = 2 in agreement with the exper­
imentally observed values of these parameters. The fixed points in terms
of the ratio of densities on the segments, 5d52 = R2 , in various situations
are plotted as a function of 1 in Figures 6(A-C). The stable fixed points are
shown by the solid lines, and the unstable ones by dashed lines. These plots,
or bifurcation diagrams, show the values of 5d52 corresponding to the fixed
points in scent space. If there is only one stable branch for a given value
of I, then the ant densities will always evolve to a given configuration on
the network. If however, there are two stable branches, the system will be
forced to choose one or the other. In the absence of noise the system which
starts out on one side of the dashed line or the other will always evolve
towards the stable state on that side of the line. The natural fluctuations of
the density will introduce an element of randomness in the choice of stable
state, particularly in those systems which start out on or near the dashed
line.

5.1.1 The binary bridge

Symmetry breaking for the binary bridge occures when 1 = 2. Near a critical
point where the R = 1 branch becomes unstable one would expect to see a
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great increase in the fluctuations of the densities. Figures lO(c) shows an
example of these critical point oscillations.

Figures 6(A-B) show the bifurcation diagrams for the symmetric and
asymmetric cases respectively. Figure 6(A) illustrates situation b described
above. The R = 1 becomes unstable when, > 2, and even though the
system is completely symmetric the ants will spontaneously break this sym­
metry and choose one of the bridges.

Figure 6(B) illustrates what will happen in situation a. There are three
regions of interest. When, < 2"fU only the branch R = 1 is possible.
When 2"fU <, < 1 +v, R = 1 and R+, which represents the choice of the
shorter branch, are stable. When, > 1 + v, R± are stable and R = 1 is
unstable. This says that while the choice of the shorter segment becomes
possible before the longer segment, in the absence of noise, the ants should
still choose the segment which gets the advantage first.

A full analysis of the effect of noise on the system would be necessary to
determine whether the ants would choose the shortest segment with greater
probability in this model. It can be shown that noise plays a constructive
role in this case.[25] At the point ,(v + 1) = 3 the R = 1 becomes unstable.
At this point only R+ is stable. If the number of ants builds up sufficiently
slowly the fluctuations in the system will cause a choice of the shorter seg­
ment before, and especially upon, passage through the point ,(I +v) = 3.

The choice of the shorter segment can still be understood as a kind
of time delayed auto-feedback, as analyzed by Deneubourg et. al.[8] The
reasoning proceeds as follows. Ants which take the shorter route reach the
food sooner. When they turn around and head for the nest they follow
the scent, and they find the scent slightly greater on the route they arrived
on, and are thus more likely to choose this route and lay even more scent.
Soon the equilibrium densities, which depend on the scents, will be reached,
and the auto-feedback stops. However in the short time this has taken
the shorter branch has built up a slightly greater scent. This system then
effectively starts off above the R = 1 line in Figure 6(A). In this case, the
ants will usually tend to attract to the shorter branch. From this argument
we see how some simple non-equilibrium network properties can be taken
into account within the framework of our equilibrium approximations.

This choice of the shorter segment depends on the short-term evolution
of the system. However, our calculations show that in the long term, once
an equilibrium has been established on a given route, the appearance of a
shorter route will not cause the ants to shift to this new route, in agreement
with experiment.
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5.2 Two food sources

6(C) illustrates the transcritical behavior for the asymmetrical two food
source situation c. For a certain range of 'Y there is only one fixed point,
and the ants will always choose the better food source. In this case they
will be able to switch to a better food source should one become available.
Depending on the scent laying ratio m/7J2 there can be quite a large range
of 'Y for which this type of switching is possible. If 'Y is large enough the
choice of the poorer food source also becomes a stable possibility. In this
case the ants will be unable to switch to a better food source if offered. It is
important to note that if the number of ants on the network slowly builds
up from zero, which is what usually happens experimentally, the system will
move along the upper branch in figure 6 and will always choose the better
food source, no matter what final value 'Y takes. The case of equal quality
food sources is equivalent to the symmetric double bridge case. Provided 'Y
is great enough the ants will choose one of the two sources at random.

5.3 Monte-Carlo simulations

Monte-Carlo simulations of these process were performed to test all of the
above predictions, and in order to view the effects of fluctuations on the
evolution of the ant densities. In the computer simulations a certain number
of ants are allowed to move on the networks. During a time step each ant
either moves forward one step on the segment it is on, or if it is at the end
of a segment (the segments are all of integer length), chooses a new segment
and moves onto it. The scent densities at the ends of each segment are
then updated and used to compute the new transition probabilities. The
initial configuration of ants and the scent densities on segments are set at the
beginning of the program. This representation of the swarm is a probabilistic
cellular automata.

In the siI;nulations represented by Figure 10(a) and Figure 10(b), the ants
were placed randomly on the network, and the initial pheromone density set
to zero. In the situation shown in Figure lO(b) all of the ants started out on
segment 2. In these simulations 'Y was varied by varying the total number of
ants on the network. The numbers varied between approximately 400 and
550 ants for the three simulations shown.

Figure lO(a) is a siInulation of the binary double bridge, and shows the
evolution of the density ratio 81/82 on the network. In this case 'Y = 2.5.
This is above the critical point 'Yc = 2, so the ants must eventually break
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symmetry and attract onto one of the segments. In this case the ants attract
onto segment 1. 51/52 hovers around the unstable fixed point at 51/52 = 1
until a large enough fluctuation comes along and sends 51/52 towards one
of the attractive fixed points. Our previous calculations predict that 5t152
should reach a mean value of 4.00 for this value of I, and it can be seen that
51/52 reaches a plateau at about this value.

Figure lO(b) illustrates the ability of ants to switch to a better food
source. Initially, all the ants are on segment 2 which leads to the poorer
food source. The scent laying rate on segment 1 is set about five percent
greater than on segment 2, I is chosen to be just below the point where
the bifurcation occurs (see FIG. 7). In this case the ants initially find
themselves in an unstable configuration, and it is only a matter of time
before they shift to segment 1 where the better food source is located. In
the simulation ilJustrated in Figure 10(b), 51/52 becomes greater than 1
around t=500, and reaches a new plateau around t=900.

Figure 10(c) again illustrates the symmetric double bridge, this time
at the critical point, I = 2. The simulation was run for a long time in
order to illustrate the long range critical point fluctuations. In most of the
simulations 51/52 reaches its fixed point mean value in 1000 to 2000 time
steps. Note that when the system is at a critical point it can never make a
decision. 51/52 shows fluctuations on an extremely long time scale. These
long range correlations are typical of systems at a critical point.

The approach used here is perhaps a little unusual for the study of ar­
tificial life. With the availability of computers the usual method of attack
is straight simulation. Here, simulations have been performed more or less
as illustrations of the theoretical understanding which has been gained. It
is hoped that a theoretical attack will not only contribute to understanding
in itself, but prove a road map for later more extensive simulations.

6 Summary

In this paper I have tried to show how that it is possbile to understand
the properties of swarms using some tools from statistical physics. The
main goal, that of complete understanding of swarms, was of course left
unfinished. However, the more modest goal of setting up a structure which
will serve to support such a study, I think has been achieved. We have taken
a tour through the mathematical devices which can be used for this purpose,
and have introduced a number of new ways to look at the problem in terms
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of the vocabulary and physics of phase transitions. The analysis of one type
of model gave an indication of the types of things which are possible, as
well as ideas for new experiments involving ants. Finally, at the very end,
we got a brief glimpse at the compexities which might arise when we will
eventually seek to go beyond the deterministic approximation, and include
a full understand of the complex effects of fluctuatuions.[25J
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and from her support, both financial and spiritual. This work was supported
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done at the Center for Statistical Mechanics and Complex Systems at the
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Abstract

A class of models with applications to swarm behavior as well as
many other types of spatially extended complex biological and physical
systems is studied. Internal fluctuations can play an active role in the
organization of the phase structure of such systems. Consequently, it is
not possible to fully understand the behavior of these systems without
explicitly incorporating the fluctuations. In particular, for the class
of models studied here the effect of internal fluctuations due to finite
size is a renormalized decrease in the temperature near the point of
spontaneous symmetry brealdng. We briefly outline how these models

--------- -can-b-eappliecn,,-t!'feoehavii5f6faii-aifCswarrn.--- - ---

In this paper I introduce a class of models which is in line with the
basic processes acting in a variety of systems in nature, particularly bio­
logical ones. Some systems which fall into this class are insect swarms,
swimming bacteria and algae,[6) physical trail formation, the evolution of
river networks,[7] diffusive transport in polymeric materials,[IJ population
distribution models, various types of fractal growth phenomena, [13] and de­
velopmental morphogenesis. [11)

Here we study what will be called stigmergic processes as a generaliza­
tion of the concept of stigmergy introduced by Grasse[3] in the context of
collective nest building in social insects. The hypothesis of stigmergy, as
described by Wilson[14], is that it is the work already accompl-lshed, rather
than direct communication among nest mates, that induces the insects to
perform additional labor. The concept of stigmergy has also been invoked
more recently in regards to swarm behavior.[12]
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The more generalized idea of a stigmergic process is realized here in
systems composed of three basic ingredients. The first ingredient is a particle
dynamics which obeys a Markov process on some finite state space X. The
particle density p(x, r) obeys the Master equation

op~~ r) = L{Wr(xly)p(y, r) - Wr(ylx)p(x, rn dDy, (1)

where Wr(xly) is the probability density to go from state y to x at time
r. The second element is a morphogenetic field <r(x, r), representing the
environment which the particles both respond to, and act on. We will study
one of the simplest situations, a fixed one-component pheromonal field which
evolves according to

o<r(x, r)
Or = -K <r +r, p, (2)

where K measures the rate of evaporation, breakdown or removal of the
substance, and r, the rate of emission of the pheromone by the organisms.
Lastly, some form of coupling is made between the particles and the field.
This coupling takes the form of a behavioral function which describes how
the particles move in response to the morphogenetic field, and in turn, how
the particles act back on this field.

As we shall see, small changes in the microscopic behavior of the par­
ticles can result in large changes in the global behavior of the swarm, or
particle field. This variability has significant implications not only for the
behavioral response of the swarm to external stimuli, but also in the evolu­
tion of cooperative behavior. Wilson has remarked that an understanding
of how this occurs would constitute a technical breakthrough of exciting pro­
portions, for it will then be possible, by artificially changing the probability
matrices, to estimate the true amount of behavioral evolution required to go
from {the behavior ofl one species to ... that of another. [14] He has further
remarked thlft such large behavioral changes resulting from small changes in
the individual dynamics would provide evidence that social behavior evolves
at least as rapidly as morphology in social insects. This could provide an
explanation why behavioral diversity far outstrips morphological diversity at
the level of species and higher taxonomic categories in social insects.

In the region of a nonequilibrium phase transition the morphogenetic
field, and hence the transition matrix, changes very slowly on scales typical
of the particle field relaxation time since in this region the unstable modes
will exhibit critical slowing down and will relax on a time scale much longer
than the time scale of the stable modes. The particle modes are said to be
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slaved to the morphogenetic field, and can be adiabatically eliminated from
the picture.[4] We obtain the stochastic order parameter equation

oa(x, T)
aT = I> a + 1)Ps[lT] + 1) g[lTl~(x, T), (3)

where Ps[lT] is the quasi-stationary partiCle density, g[lT] is a function de­
scribing the fluctuations of the quasi-stationary particle density about its
mean value, and Eg(x, Tn = 0, E{~(x, T)~(X', T'l} = o(x - X')O(T - T' ).
Since Ps will depend on both the global state of the morphogenetic fields,
and on the global boundary conditions, this is a globally coupled set of equa­
tions for the evolution of the morphogenetic fields. Slaving of the particle
field therefore allows an explicitly coupled global dynamics to emerge from
the strictly local interactions of the model, providing a key to how a globally
integrated response may emerge from a system of locally acting agents.

The the fluctuations in the system are state dependent. In addition
to amplifying an instability which exists in the absence of noise, this type
of fluctuation can also produce transitions and ordered behavior in its own
right. One of the consequence of this fact is that slaved particle field will con­
structively determine the self-organization properties of the systems through
its fluctuating properties, as well as through quasi-stationary values. This
is a fact which should be constantly be born in mind when studying such
models.

For the purposes of this paper we will consider the case where the
transition matrix takes the form W(xly) ex f(a(x))p(lx-yJ), where f
is some weighting function describing the effect of the field a on the mo­
tion of the particles, and p(lx - yl) is a probability distribution of jumps of
length r = Ix - yl. Transition matrices of this type obey detailed balance,
W(xly)f(a(y)) = W(Ylx)f(a(x)). In this case we can define a partition
function

(4)

where V is the volume of the state space X, and N is the total number
of particles. A one-to-one analogy with a thermodynamic system with en­
ergy U(a(x)) and temperature T = ;3-1 can be made if we set f(a(x)) =

exp (-;3U(a(x))), where any parameter T can be regarded as a temperature
parameter if f(a(x); aT) = f-"(a(x); T). Statistical quantities of interest
can be calculated from the partition function according to the usual pre­
scriptions. In a closed system the mean particle density and dispersion in
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the energy state E are given by

where /-" is the volume of the system in energy state E. The slaved parti­
cle field in energy state € can then be represented, to lowest order in the
fluctuations, by p,!".] = E {p,[".]} + v'E {(D.p,)"!".]} ~(x, t).

We introduce the dimensionless parameter 15 = N/V, the mean density
of particles, and v = /-'- / /-'+, the ratio of the volume of the field (7(x) in
the (7- state to the volume in the (7+ state. We also define the function
R((7+,(7-) = f((7+)/f((7-). In the mean field approximation a Langevin
equation

dm 1
di" = -m + F(m) + .jNQ(m) ~(t)

for the order parameter m can be derived,[lO] where

(6)

(7)

and where the F and Q are determined as functions of m by

(
vm m )R(m)=R 15+--,15--- .
l+v l+v

(8)

The order parameter m is analogous to a gas-liquid order parameter, and
represents the difference in the values of the field in the (7+ and (7- states
after spontaneous symmetry breaking. The behavior of this system is de­
scribed by the potential function

j mm-F(m) 1
i[>(m) = Q2(m) dx + N InQ, (9)

where the phases mi ofthe system are determined by the conditions i[>'(mi) =
0, i[>"(mi) > 0.[5]

In the continuum limit (N --> 00) it can be shown that the critical value
of the mean density Pc at which spontaneous symmetry breaking occurs is
given by the condition -Pc U'(Pc) = T. Generally Pc is will increase with
increasing temperature. The relative stability of two phases mj and m2 is
determined by the relative potentials i[>(mIJ and i[>(m2) for each phase. Even
in the continuum limit the details of the fluctuations cannot be neglected due
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(10)

to the presence of the factor Q2(m) under the integral in 9, and the relative
stability of the phases will depend on the precise details of the internal
fluctuations. Similar observations have been made elsewhere by Landauer
and others. [8]

When N is finite, the situation is still more complicated. It is clear
that the possible values of the order parameter and the phase structure
do not remain unchanged under the influence of internal fluctuations. The
criterion for spontaneous symmetry breaking in this case is -Pc U'(Pc) =

T, where T is the renormalized temperature T = ,(N)T where ,(N) =

IN + (N/2J2 - N/2. This is precisely the continuum condition except that
the finite size fluctuations have the effect of renormalizing the temperature
by the factor ,(N) < 1. The effect of increasing the internal fluctuations
through decreasing the total number of particles has the effect of decreasing
the temperature. We thus arrive at the seeming paradox that increased
internal fluctuations may produce increased order.

I will now briefly outline how the previous analysis can be applied to the
example of an ant swarm. More details can be found elsewhere.[9) In this
case the individual ants are the particles, and the morphogenetic field is a
pheromonal substance which the ants sense with their antennae, and emit
from their bodies as they move. The basic measurement the ants make is
the quantity of pheromone receive by each antennae. They can therefore
respond to difference in the pheromone between the antennae, and move
accordingly. A very general model of such motion assume that the particle
experience a jorce which is proportional to the scent gradient at that point
multiplied by some nonlinear response function X(o-) of the scent at that
point. The nonlinear response function models the nonlinearities underling
the basic physiology of the sensing apparatus, for instance, any nonlinear
neural/receptor response to the pheromone, including such effects as satu­
ration of the receptor sites on the antennae by the pheromonal substance.
In addition there is an element of randomness due to fluctuations in the ex­
ternal environment as well as internal fluctuations. These are incorporated
into an effective random force with a strength in proportion to JT where
T is the temperature factor. The motion of a particle can be described by
a Langevin equation of the form

d:~t) = X(o-(x»\7o- + J2T ~(t),

where E{~(t)} = 0, and E{W)W')} = 6(t-t'). This can be written in the
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(12)

form

d:~t) = -V'U(x) + V2T ~(t), (11)

where X(Il(X)) = -U'(o-(x)). Easy to show that the behavioral function of
such a system is given by fell) = exp( -,BU(Il)).

The microscopic dynamics of the ants which we will study in the rest of
the paper is determined by the response function

x(o-)=a+~,
c+p

where p is the pheromone density, and a and c are constants with the units
of pheromone density. This function is inspired by the observed behavior of
actual ants [2] . The constant a is roughly the threshold where the response
of the ants to the pheromone is small unless p > a. The constant c will be
known as the capacity. When p approaches c the ants respond less accurately
to pheromone gradients. This is because when the pheromone density is very
large the antennae receptors become saturated and the ant can not sense
the pheromone gradient as accurately.

For simplicity we will introduce the dimensionless variable II = pia
and the dimensionless parameter 6 = a/c, where 1/6 is the dimensionless
capacity. The energy function takes the form

(13)

where we drop off any additive constant term, which have no effect on the
behavior of the ants. For the case where the density of ants it low, and hence
the pheromone density is low (p« g), we can make use of the approximate
energy function UO(Il) = -In(a + 0-).

An illustration of this effect is shown in Figure 1. A given current of
organisms I -flows into a junction from the left. On the lower branch the
pheromone density is fixed at 0-0, and on the upper branch II is allowed to
vary. T(ll), the proportion of the current which flows into the upper branch,
is given by the sigmoidal function

(14)

The plots on the right of Figure 1 shows T(ll) for varying values of,B and
6. The upper plot, where 6 is fixed, shows the influence of increasing the
temperature (lowering ,B). As the temperature increases the threshold re­
sponse becomes less and less pronounced. In the opposite limit ,B ---> 00,
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T(a) would be a step function e(a - ao). In this limit all of the ants would
choose the branch with the greatest pheromone density. In the lower plot,.
the noise level is fixed, and the capacity c = OIjo is varied. It is interesting
to note that the effects of decreasing the capacity with fixed temperature
are similar to the effects of increasing the temperature with fixed capacity.
Wben the density of the ants increases, the pheromone density increases up
to and beyond the capacity, the qualitative effects on the behavior of the
ants is the same as if the temperature was increased. This gives the swarm
roughiy the ability to modulate its temperature by modulating its numbers.

This can be made more clear by defining an effective temperature factor
lI(a) through the relation f(a) = exp( -;3Uo(rI)jll(a)). l1(a) roughly mea-
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(15 )

sures the effective change in temperature as a function of the pheromonal
field when compared to the case where 0 = 0, which correspond to the energy
function Uo· The effective temperature is then given by O(u)T where

In (1+ 1;80-)
O(u) = -..,-'-..,.,.-c:...:..:,::.L.

In(l +u) .

Fig. 2 illustrates the increase in the effective temperature with increasing
u for three different values of o. Since increasing the temperature tends to
decrease stability, we might expect any organized behavior to breakdown
when the number of participants grows too large. It is this ability of the
swarm to self-modify its temperature which allows it, in a sense, to traverse
its various phase transition boundaries.

Figure 3 is a typical phase plot for the ant swarm illustrating regions
of homogeneity, bistability and hysteresis. The plot illustrates the effect
of behavioral and swarm parameters on the swarm as a whole. In this
case 0 is a behavioral parameter which could be expected to change on
the evolutionary time scale, and 'Y, which is proportional to the number of
participants, is a swarm parameter which determines the behavioral "phase"
of the swarm. More details may be found in previously published papers[9]
where the properties of an ant swarm are analyzed in depth, and it is also
shown how the collective behavior of real ants[2) can be understood in terms
of such models.
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