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Inverting the blowtorch: studying the ‘slow’ molecular kinetics of
proteins with nonequilibrium response spectroscopy
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Nonequilibrium response spectroscopy (NRS) is a novel method of analyzing the molecular
kinetics of voltage-sensitive proteins that involves measurement of the nonequilibrium re-
sponse of the molecules driven in a thermodynamically irreversible way by fluctuating fields
with large amplitudes and frequencies. NRS is sensitive to features of the conformational
kinetics that can not be resolved by means of more traditional relaxation transient type
experiments, and can be understood conceptually as an inversion of Landauer’s blowtorch
idea.
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1. Introduction

One of Rolf Landauer’s contributions to statistical physics that has had the most influence on my way of
thinking is the so-called ‘blowtorch’ principle [1, 2]. This, in many way, is a contribution made over an entire
career (see the reference in [1]), and so is a fitting point to start a paper in honor of this career. Over the
years this principle has helped to tie many types of nonequilibrium phenomena together for me, and I am still
impressed by the way that this implicitly [2], or in very simplified terms, captures the essence of the many
important and interesting features of nonequilibrium systems by saying what nonequilibrium systems arenot
like. Perhaps because it has been expressed in such simple terms, and in the form of a criticism of existing
approaches, the legacy of the blowtorch principle is often neglected in the literature. To mention only a single
example, the most important physical principles ‘discovered’ by the currently fashionable ratchets craze [3]
can reasonably be called footnotes to the blowtorch.

Landauer’s ‘blowtorch’ principle states that the behavior of a nonequilibrium system will generally depend
on the specific details of its kinetics, even on pathways that traverse infrequently occupied kinetic states far
from any stable state. In contrast microscopically reversible systems can be well characterized by criteria that
depend only on the local neighborhood of the equilibrium state. The original purpose of the blowtorch principle
was to point out the fundamental problems with attempts to describe the nonequilibrium system via simple
generalizations of the local treatments used to describe equilibrium systems. However, it truly expresses the
source of the underlying complexity that has been discovered (an sometimes rediscovered) recently in areas
such as noise-induced transitions, the theory of large fluctuations, and fluctuation-induced transport. Like
many very general principles it tells us not so much what the answers are, but what is often more important,
where to look. Here I will show how the blowtorch idea can be turned around: the nonequilibrium response
of a system that is driven in a thermodynamically irreversible way can be used as a tool for uncovering subtle
details of its underlying kinetics.

This idea has been used to study the kinetics of voltage-sensitive ion-channel proteins in the laboratory. An
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Fig. 1. Millonas–Hanck model of the human cardiac sodium channel gating kinetics. The voltage dependence of the rates is described
in the text, andu is a dimensionless parameter. Specific parameters are given in the footnote.

analysis of the structure and function of the biomolecules is important in understanding and controlling bio-
logical processes. However, the problem is even more difficult experimentally than the typical experimental
physicist or chemist might realize. This is because many proteins exhibit their specific functional proper-
ties only in situ. Physicists can freeze protein molecules, zap them with lasers, and use many sophisticated
techniques for measuring protein motions. While the study of protein dynamics in controlled settings may
provide an interested physics laboratory for the study of a range of exotic phenomena [4], in most cases the
biological applicability of information obtained under such conditions is limited. In order to explore biolog-
ical structure-function a different course is usually taken involving what are sometimes severe experimental
limitations. However, modern molecular biology has provided a host of powerful techniques based on recom-
binant DNA technology [5]. As the sophistication of these techniques grows biophysicists have started to seek
an understanding and control of protein structure-function that extends beyond mere heuristic descriptions
[6] to the underlying physical mechanisms themselves, and to dream of a physiologically meaningful way to
make unambiguous experimental measurements of these properties.

To study severe experimental limitations. However, modern molecular biology has provided a host of
powerful techniques basedon recombinant DNA technology [5]. As the sophistication of these techniques
grows biophysicists have started to seek an understanding and control of protein structure-function that extends
beyond mere heuristic descriptions [6] to the underlying physical mechanisms themselves, and to dream of a
physiologically meaningful way to make unambiguous experimental measurements of these properties.

The study of voltage-gated ion channels, large transmembrane proteins in excitable cells that open a pore in
response to electric fields, is a good example of this trend in molecular biophysics. Experimentalists would like
to understand the location of the voltage sensors, the electrical properties, and the conformational substates
of these proteins. The ion-channel-gating mechanism is believed to involve complex rearrangements in the
tertiary structure of the protein. These conformational changes are dominated by thermal activation and occur
on time scales of from microseconds to minutes. These are called ‘slow’ kinetics here to distinguish them
from the ‘fast’ molecular motions that occur on the level of the individual atoms in the protein.

Biophysicists, like chemist, prefer to construct Markov models [7] such as the one pictured in Fig. 1. These
models are used for studying and collating the ‘slow’ kinetic properties of ion channels. The states of these
kinetic models are usually grouped (as in Fig. 1) into closed (C), open (O), and inactivated (I) conformations,
where the transition ratesαi (V) andβi (V) between these states are voltage dependent. Transitions between
the states are thermally activated events and typically are assumed to take the exponential formαi (V) =
αi (0)eqi δi V/kT, andβi (V) = βi (0)e−qi (1−δi )V/kT that is in accord with Eyring rate theory, whereV is the
voltage applied across the cell membrane,αi (0) andβi (0) are the activation rates at zero voltage,qi are
the gating charges, and 0< δi < 1 are dimensionless parameters representing fractional electrical distances.
These parameters determine a transition matrixW̃ for a discrete master equationρ̇ρρ(t) = W̃[V ]ρρρ that describes
the evolution of the probability distribution vectorρρρ(t) over then conformational states of the model. If such
models are valid, the states and transition rates give information about the gross molecular conformations
and electrical properties of the ion-channel protein. However, they should not necessarily be interpreted as
representations of the actual molecular motions. For that the representation must be more or less unique,
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but as we will see, using conventional methods, it is not possible to resolve enough detail of the underlying
kinetics to make such a unique interpretation possible.

The voltage-clamp technique, in which the voltage across a cell membrane is controlled by a feedback
circuit [8] that balances (and therefore measures) the net current has been the best biophysical tool for the
study of voltage-sensitive channels since the beginning of modern biophysics with the work of Hodgkin
and Huxley [6]. Since its initial development [9], a basic set of voltage-clamp protocols based on potential
stepping have dominated electrophysiological studies of the properties of ion channels. This is the situation
in which the voltage across a membrane is stepped from a holding potential to a test potential, or at a few
points in time, and the current transient recorded. Information about the electrophysiological properties of a
channel is then obtained from an analysis of these relaxation transients since the relaxation of the probability
distribution can be calculated formally from the master equation,ρρρ(t) = exp(tW̃[V ]ρρρ(0), whereρρρ(0) is the
initial distribution when the voltage is stepped toV at t = 0. This is the relaxation transient method. This
situation is completely analogous to many experimental situations in condensed-matter physics. While the
basis for much of electrophysiology, the relaxation transient method also sets some limitations. Very different
kinetic models can lead to very similar relaxation transients [10], so these different kinetic representations
are degenerate with respect to the conventional data. Therefore, what is needed is a new type of experimental
approach that breaks this degeneracy.

2. Critique of the relaxation transient method

A generic analysis of such experiments which will first be present reveals the source of their limitations.
By mapping relaxation transient experiments onto the appropriate space the feature of the experiments can
be formally analyzed. What can then immediately be seen from this analysis is that these experiments are
intrinsically ambiguous.

We wish to determine the elementary voltage-dependent rates of transition between then gross conforma-
tional states where in this case there areno means to independently determine these quantities. Analogous
limitations arise in many different contexts, for example the limitations that arise in the analysis of the decay
of a correlation function in any complex system. A measurement of transition rates requires ensemble mea-
surements, and the stateρ of an ensemble of channels is a point(n − 1)-dimensional space (normalization
requires

∑
i ρi = 1), which we will call thekinetic manifoldof the channel. Experimental measurements

determine only certain projections of the distribution vector—(n−1)-to-1 mappings from the kinetic manifold
to the observable current that are fixed by the physics of the molecule. The macroscopic ionic current (the
quantity measured below) is equivalent to a measurement of the mean probability of the conducting (open)
state or statesI = ∑

i gOi ρOi . Single-channel measurements can distinguish between states with different
conductancesgOi . Gating currents (displacement currents that result from movements of the gating charges)
are measurements of the rate of change of the total gating chargeĊ(t) ∝ Q · ρ̇ρρ(t), whereQi =

∑i
j=1 qj .

The maximum amount of information can be extracted from a given data type by measuring the quantity on
all possible ensemble statesρρρ, a situation that is also impossible since we cannot prepare an arbitrary ensemble
state. The easiest distributions to prepare lie on the one-dimensionalequilibrium submanifold(parametrized
by V) of equilibrium states,ρρρeq(V) (whereW̃[V ]ρρρeq(V) = 0), by allowing the channels to relax at a fixed
potentialV . Further distributions can be prepared from this set of states by stepping (att = 0) to the new
voltageV ′. The channel ensemble executes a brief excursion away from the equilibrium submanifold before
returning to it at the new pointρρρeq(V

′). While this excursion is taking place the channel explores one-

dimensional trajectory,ρρρ1(V,V ′, t) = exp(tW̃[V ′])ρρρeq(V). Since the points reached by stepped potential
experiments are parametrized by not more than three parameters(V0,V ′, andt), whenn− 1� 3, the set of
all possible distributions reachable by stepped potential experiments (theone-step submanifold) is one of very
large codimension with respect to the whole kinetic manifold. In other words, one-step experiments hardly
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explore the kinetic phase-space at all—the source of a great deal of ambiguity. Models based on data from
these experiments are correspondingly ambiguous.

Standard relaxation transient experiments thus involve two independent limitations: one due to observational
(projection) limitations and the other due to limitations of protocol. While a great deal of work has gone into
removing the limitations of projection by developing new types of measurement, little work has been done on
resolving the limitations of the relaxation transient method itself. Protocol ambiguities arise from limitations
in our ability to experimentally explore all points in the kinetic phase-space. They might be removed by
enlarging the region of that space explored by driving the channels off the one-step manifold. The logical
extension of this idea is to change the voltage very rapidly at a large number of points in time, a method we
call nonequilibrium response spectroscopy(NRS). In order to drive the channel ensemble off the one-step
manifold the voltage must fluctuate more rapidly than the channel relaxes to equilibrium.

3. An example of NRS

The kinetic model shown in Fig. 1 was fit to data from whole-cell ionic current recordings from human
cardiac sodium channels (hH1a) heterologously expressed in HEK293 cells. Macroscopic currents of the
model in response to a voltage step are given byI (t) = g(V)(V − Vr )eO · ρρρ(t), whereVr is the reversal
potential,e0 is the projection vector used to extract the probability of the open (conducting) states fromρρρ(t),
andg(V) is the instantaneous conductance that takes into account voltage dependencies of the conductance
that are independent of gating. These include GHK rectification and voltage-dependent block of the channel
by extracellular divalent cations like Ca+2. The reversal potential andg(V) can be determined independently
by experiment [11] using standard techniques. Our model is similar to one proposed for the sodium channels
of the squid giant axon [12], except for additional open and inactivated states O2 and I2. The model in [12] was
based on combined information from single-channel, macroscopic-ionic and gating-current recordings, and
reproduced all of these types of data very well. It thus represents the state of the art with respect to modeling
sodium channels. While some differences are to be expected there are major similarities because of the close
homology, between the two isoforms. Model parameters† were determined by minimizing of the chi-squared
error between the set of 10 stepped potential relaxation transients and the model predictions for these transients
(Fig. 2A, B) [11]. The results were in good agreement with the finding of many other researchers that used
data from the stepped potential series: in particular the transitions to the inactivated state and the last activation
step before the channel opens are fairly voltage independent, while the most voltage-dependent steps are the
first activation steps.

The homogeneous form of the kinetic equation makes calculating the evolution of the probability distribution
simple when the voltage is held constant. This simplifying property can be preserved at the expense of allowing
the voltage itself to fluctuate in a random but Markovian way. An example of this type of voltage noise is
telegraph noise [13]: a stochastic processVt that switches at random times between two states,Vt ∈ {V+,V−},
at the mean rateω/2. The time-dependent transition rates in the model are then given adiabatically by
αi (t) = αi [V(t)], βi (t) = βi [V(t)], an approximation that remains valid so long as the intraconformational
fluctuation frequencies(' 80 kHz) [14] are much larger than the bandwidthω of the voltage fluctuations
(≤ 10 kHz in the experiments described below) [11]. However, when the bandwidth of the voltage fluctuations
is equivalent or greater than some or all of theinterconformationaltransitions between states the response of
the channel can become very sensitive to subtle features of the underlying kinetics. This again is an example
of the blowtorch effect, though in this case the specific detail are somewhat removed from those considered

† The optimal paramer fit of the model to the stepped potential series (where in each casei runs from 1 to 7) were: (in
kHz) αi (0) = 6.56,10.25,1.10,0.17,0.0092,2.37,13.96, βi (0) = 0.010,0.012,1.12,0.0085, ∗,9.42007; (in units of
e) qi = 3.65,3.82,0.041,0.11, ∗,0.18, ∗; (dimensionless)δi = 0.03,0.60,0.56,0.24, ∗,0.73, ∗, whereq5δ5 = 0.12, and
q7δ7 = 0.07,u = 1.2.A∗ indicates that the parameters are constrained by conditions of microscopic reversibility.
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Fig. 2. Experiment showing NRS data is more sensitive than standard relaxation transient data. Model transients were calculated from
the analytic expressions in the text using subroutines from Matlab. The reversal potential was 39.1 mv. All data from the same cell except
for D, and carried out at 282 K. A, B, Relaxation transients (heavy lines) and model predictions (thin lines) for steps from a holding
potential of−150 mV to A−76,−58,−46,−22, 14 mV (activation) and B to 30 mV for 1 ms, and then to−120,−90,−66,−42,
−12 mV (deactivation). The model was based on an optimal fit to the data shown in A and B. C, E, Raw current traces in response to
voltage fluctuations withV+ = −30 mV andV− = −120 mV, and with bandwidths of C, E 10 kHz and D 2 kHz. D control data from
untransfected cell with no sodium channels. F–K Model predictions (thin lines) and NRS relaxation transients (heavy lines) formed by
averaging 500 raw data traces such as C and D. Fluctuation band widths (in kHz): F, 10; G, 5; H, 3; I, 2; J, 1; K, 0.7. L. Superposition of
first few ms of F–K showing the decrease of the rise rate with increasing frequency.

by Landauer in his simple examples. As I have already mentioned, fluctuation-induced transport, a related
effect, is a footnote to the blowtorch idea.

An n-state channel described by a kinetic scheme, such as pictured in Fig. 1, and driven by the telegraph-
noise voltage fluctuations can be described by the 2n-dimensional conditional master equation℘̇℘℘ = W̃℘℘℘,
where

W̃ =
(

W̃[V+] − (ω/2)1I (ω/2)1I
(ω/2)1I W̃[V−] − (ω/2)1I

)
, (1)

and where℘℘℘ = (ρρρ+, ρρρ−) is a 2n-dimensional conditional probability distribution vector, whereρρρ± is the
conditional probability vectorgiven thatthe voltage is in theV± states. It may help to think of the system as
an extended Markov model with states specified by both channel and voltage indices. The formal solution for
the evolution of the conditional probability vector is℘℘℘(t) = exp(tW̃)℘℘℘(0), where℘℘℘(0) is determined by the
initial state of both the channel and the voltage. In all the experiments done here the initial state of the voltage
was set toV+, so℘℘℘(0) = (ρρρ(0),0). The simplest way to use this method to analyze whole-cell recordings is
to compute averages over many different realizations of the individual fluctuating current traces in response
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to pulses of telegraph noise of a given duration. The mean transient whole-cell current is〈I 〉 = 〈I+〉 + 〈I−〉,
where〈I±〉 = g(V±)(V − V±)E±O · ℘℘℘(t), and whereE+O = (eO,0) andE−O = (0,eO). Information is also
contained in the fluctuations of the individual current traces but is not as helpful from the standpoint of accurate
kinetic analysis because, in contrast to the average current transients, only the one-dimensional stationary case
corresponding to the outdated and quantitatively incorrect Hodgkin–Huxley model is amenable to a simple
mathematical treatment [13].

Figure 2 F–M shows mean transient responses to telegraph noise with bandwidths that vary from 700 Hz
to 10 kHz together with the corresponding predictions of our model. The experiment is designed so that the
input bandwidth is high enough that its effect on the response is negligible. We are able to achieve such
high-frequency voltage control by making use of a specially designed low-resistance pipette as discussed in
more detail in [11]. The resistance of the pipettes in solution can be as low as 100 k�. Similar techniques have
been used in our laboratory for a number of years [15], and under certain conditions, when series resistance
compensation is used, RC times of as little as 5µs (corresponding to a corner frequency of 30 kHz) can be
achieved. Here such high speeds were not required. The data shown were obtained with an input bandwidth
just in excess of 10 kHz, and series resistance compensation was not used since all that was necessary to
focus on the most interesting effects lie in the range between 2 and 6 kHz, which was well below our corner
frequency.

Our model was based on stepped potential data and for low frequencies, as expected, continues to prove a
good predictor of the mean current in line with the analysis presented above. Since we used activation and
tail-current recordings that spanned the range of physiological potentials, the model represents nearly the best
that can be done with a stepped potential series. Model parameters were consistent with the finding of other
researchers.

For higher frequencies a mismatch begins to occur at frequencies of about 1–2 kHz, an indication of
the discrepancy between the model and nature. This represents information invisible to relaxation transient
analysis (Fig. 2A, B). After the analysis presented above it should not be surprising that this mismatch starts
to occur in the region of most rapid change in the peak amplitude of the response, which nearly doubles when
the frequency is lowered from 3 to 1 kHz. Over much higher and lower frequencies the peak inward currents
change very little. The response saturates above 6–10 kHz, and effect that occurs when the correlation time
of the fluctuating voltage is much less that the relaxation time of the channel. Note that this frequency is
well below the input-corner frequency, and is just an expression of the highest frequencies of the channel
kinetics. This case can be treated by replacing the inhomogeneous kinetic equationρρρ(t) = W̃[V(t)]ρρρ by
the homogeneous one,ρ̇ρρ(t) = 〈W̃〉Vρρρ, where〈W̃〉V =

∫
dV ρ0(V)W̃[V ], whereρ0(V) is the stationary

probability distribution of the voltage fluctuations. The response will be independent of all the features of
the noise except the stationary probability density and therefore tractably analyzed for any kind of noise that
has a sufficiently short correlation time. The model does not show the same saturation frequency as the data,
another sign of the model’s shortcomings that can not be seen by standard experimental techniques.

Attempts were made to optimize the model parameters by including NRS data from Fig. 2 F–M in the
optimization set with the stepped potential data. We found that no model of the form shown in Fig. 1 can
simultaneously reproduce all the data in Fig. 2. Thus the information obtained from NRS indicates that a rather
different kind of kinetic scheme may be required to the one shown in Fig. 1. The ability of NRS to falsify
models that can not be falsified with current techniques should provide a powerful new tool for increasing our
understanding of the kinetics of voltage-sensitive proteins since the need to falsify oversimplified, nonunique
models has been, and continues to be, behind the continual search for new and different ways to measure
channel gating over the last half century.

W̃ is the evolution operator of a microscopically reversible system, where asW̃ is not. This difference in
symmetry is at the root of the sensitivity of the method. When there are ‘loops’ in the kinetic diagram (as is
the case here) the latter will evolve to a stationary distribution that lacks detailed balance. As is beginning to
be understood, microscopically irreversible systems are capable of exhibiting many types of unusual behavior
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Fig. 3. Drawing of typical ‘poquito’ gating current resulting from a voltage step that sets the time scale of the intraconformational
relaxation of the early activation states of the Shaker K.

that exhibit very sensitive, even singular [13, 16], dependence on specific details of the kinetics. The data in
Fig. 2 E–M are just one example of this sensitivity. With very general arguments, as mentioned above, Rolf
Landauer has emphasized similar points for a number of years [2, 1]. As far as I am aware this is the first time
the idea has been used as an experimental tool for a more sensitive determination of the underlying kinetics
of a system.

Since the master equation appears in many contexts in physics, chemistry and biology, analogous methods
could be introduced to support model selection and kinetic analysis in these other contexts. In addition, the
basic idea need not be restricted to the master equation, as will be shown in the next section. I believe these
ideas should be of interest not only to experimental researchers studying protein dynamics, but also in the
areas of statistical and nonlinear physics because they show theoretical ideas from these fields with a direct
practical application to experimental biophysics. The experimental technique also provides an arena in which
to explore nonequilibrium fluctuation-induced phenomena, and is therefore of interest on purely physical
grounds.

4. Ultra-high frequency NRS

As shown above nonequilibrium response spectroscopy can be used for a more sensitive determination of the
gating-kinetics ion channels than the relaxation-transient method. We might then be tempted to ask not just for
a better way to probe the kinetics, but discover is there is a best, or optimal way. As discussed in the remainder
of this paper, ultrahigh-frequency NRS is able to probe the microscopic details of the kinetics, and can be
used to construct genuine physicochemical kinetic models for channel gating. Rather than serving as mere
heuristic descriptions of the data from experiments, such models would fulfill the ultimate goal of molecular
biophysics: a detailed microscopic understanding of the functionally important motions of biomolecules. For
example, with such detailed microscopic models specific physicochemical descriptions of drug action could
be formulated, and drug function could be both anticipated and engineered.

As will be discussed in more detail below, if high enough frequencies can be reached, shaped voltage
pulses can be used to reveal the microscopic kinetics in a very precise way [17]. The required frequency is
the same as the frequency of microconformational fluctuations. Recently Stefani and Bezanilla [18] at UCLA
measured this time scale in gating-current measurements from the Shaker K channel. They found a short
2 µs wide spike of additional gating current (see Fig. 3) at the beginning of a voltage pulse. These spikes,
nicknamed ‘poquitos’ or small spikes, are caused by the first microconformational relaxations of the channel.
Thus the frequencies required to probe the microscopic kinetics are in the range of 80 kHz—not too far from
the 30 kHz than can already be achieved under some conditions in our laboratory. Without going into technical
detail here it will be simply stated that it is most likely possible to reach such frequencies in the near future
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using home-made high-speed voltage-clamp circuitry together with some technological developments that
have been made by fabricating low-resistance pipettes [11].

Ultrahigh frequency NRS is based on dynamical reconstruction, an idea that arises directly out of the theory
of large fluctuation in statistical physics [19]. Dynamical reconstruction is also related to the conceptually
distinct field of optimal control engineering. To understand the details of how dynamical reconstruction
works, it is first necessary to discuss the different levels of modeling of channel gating, their meaning, and
their interrelation.

The discrete Markov modeling methods, currently used to model the gating of ion channels, are the ones
most appropriate to the sensitivity of normal electrophysiological experiments. However, using ultrahigh-
frequency NRS it would be possible to probe details of the kinetics on a fine enough scale that discrete
Markov models will no longer be adequate approximations of the response. While it will be possible to
determine the parameters for the discrete level of modeling more accurately than ever before, it will also
be possible to learn much more, and the level of detail of the modeling process will have to be modified
accordingly.

On a fine enough level the protein can be modeled as a mechanical system coupled to a viscous bath.
The parts of the ion channel that determine gating involve concerted motions of large portions of the protein
molecule, in contrast to the motion of just a few amino acids. We know this because such a large effective
charge (about 12 elementary charges) moves through the field across the membrane when the channel opens.
Under such circumstances the proper description of the motion of the voltage sensor is that of an over-damped
Langevin equation

0Ẋ = −∇H(X)+ QE(t)+ f(t) (2)

where0 is a coefficient of friction,X is a generalized conformational coordinate vector, andH(X) is a
conformational energy function that depends onX. There are two forces that act on the voltage sensor. The
first is an external forceQE(t), whereE(t) is the electric field (controlled by the voltage applied across
the membrane) andQ is the actual charge of the moving elements in the protein. Note that this formulation
is easily generalized to dipole couplings to the electric field, even though for simplicity I do not explicitly
consider this scenario here. The second force that acts on the protein is a random forcef(t) due to the
thermal fluctuations of the heat bath, where the components off(t) must be white noise with〈 fi (t)〉 = 0
and〈 fi (t) f j (τ )〉 = 20kTδi j δ(t − τ), wherek is Boltzman’s constant, andT is the temperature in Kelvin,
as required by the fluctuation-dissipation theorem. Langevin equations are an adequate description of the
kinetics of small classical objects under the influence of Brownian forces. This is the type of description that
is required to approximate the fine-scale conformational dynamics of the protein.

Just as discrete Markov models are approximations of the finer scale motions of the protein described by
the Langevin equation, the Langevin equation is an approximation of the protein’s motion on a still finer
scale. The choice of a model therefore depends entirely on the desired range of its validity since the protein
has a complex structure on many different scales. The Langevin equations’ range of greatest value is where
we are interested in the fine-scale motion of the gating mechanism, but not in the very rapid oscillations and
movements of the individual atoms in the protein. The generalized coordinateX then represents the gross
position of many atoms in the molecule whose average relative position remains fixed, and that move together
as a group. For instance, the four S4 channel subunits have been proposed as just such voltage-sensitive
moving parts. Each of these four subunits are made up of about 20 amino acids that are believed to take
the more or less rigid form of an alpha helix, and contain many regularly spaced charged groups. Gating is
believed to involve some repositioning of the S4 subunits in the electric field across the membrane, but how
this repositioning works is unknown and as is currently a topic of very intense interest.

Interest is shown in simple models of this repositioning whereX is fairly low dimensional: otherwise there
is not much point of even trying to model the system at a level intermediate between the ‘fast’ atomic scale
and the ‘slow’ discrete Markovian scale. The energyH(X) represents the combined intramolecular forces that
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act on a voltage-sensing molecular group, and should be thought as indicative of the structure and function of
the protein. Often a single-variable model whereX = n · X will be considered, since the greatest changes in
energy will occur in the normal direction as a single (perhaps independent) charged group such as the S4 alpha
helix moves through the electric field. These very voltage-dependent motions are the ones we can expect to
learn the most about with the ultrahigh-frequency NRS method.

Discrete Markov models for gating can be derived from a more detailed Langevin approach when the energy
functionH(X) has a number of wells (labeled by a discrete index) whose depths are large compared withkT.
That is, the lowest energy state that the channel must pass through to get from statei to statej is at an energy
1Ui j � kT higher than statei . In this case the channel will spend the vast majority of the time near the
bottom of one of the energy wells, and will only occasionally make a thermally activated transition to another
energy well. It will then spend a relatively long time in the new well, before making another transition, and
so on. In this case when a system is in a particular energy well it can be said to be in a ‘state’ corresponding
to that energy well. This is not meant to imply that the channel is not constantly in motion, only that if we
are interested only in the motion on the scale of the transitions between the energy minima then the protein
can be said to be in a particular state that corresponds to the basin of attraction of that energy minima. It can
be shown that, when a transition between the wells takes a much longer time than it takes for the system to
relax within a given well, then the transitions between the wells are statistically independent, and random.
This is all that is required to describe the probability distribution over the three states, and the developments
of the distribution in time, provided the transition rates have been specified, in terms of a discrete Markovian
process. A complete specification of such a discrete model now requires only a specification of the Eyring
transition rates between the statesWi j (t) = Wi j (0)exp(qi j V/kT), where a base rateWi j (0) and a gating
chargeqi j must be specified for each transition, in contrast to the specification of an entire energy function
H(X) that is required for the Langevin approach.

These ideas remain valid for time-varying potentials if the potential changes more slowly than the mi-
croconformational relaxation. In this case the constant transition rates in the model can be replaced with
the time-varying transition ratesWi j (t) = Wi j (0)exp(qi j V(t)/kT). This is the basis of ordinary NRS, as
described in detail in [11], as well as in the first part of this paper. On the other hand, if the channel is driven
even faster, a response will be produced that depends not only on the discrete conformational properties of
the channel gating, but also on the faster, microconformational dynamics. In such cases the full Langevin
equation will be required instead of the discrete approximation. This sensitivity to detail implies that infor-
mation about the details can be assessed from such high-frequency response measurements—the basic idea
behind ultrahigh-frequency NRS. It turns out that in such cases the response of the systems can be directly
interpreted in terms of a detailed picture of the microscopic dynamics. This surprising result is a consequence
of my dynamical reconstruction theorem [17].

5. The dynamical reconstruction theorem

The mathematical theories behind optimal control theory (from engineering and applied mathematics) and
the theory of large fluctuations (from statistical physics) are nearly identical. The problem begins on the
level of the Langevin description of eqn (1), except that, for the time being, the case in which the thermal
fluctuations can be neglected will be considered, andf (t) = 0. Since very large and very rapid pulses ofV(t)
will only be considered the thermal fluctuations will have little chance to act during the pulse, being relatively
small. This is to be contrasted with the long-time influence of the thermal fluctuations: if a long enough time
passes a large thermal fluctuation will come along and cause the channel to make a transition to another state.
In the present situation by the time such a large fluctuation occurs the experiment (the rapid voltage pulse) is
long over. To first order then the influence of the rapid voltage pulse on the channel can be described with the
equation0 Ẋ = −H ′(X) + QE(t), where I now consider only the important component of motionX that
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is normal to the electric field. Later it will be shown how small thermal fluctuations during the pulse can be
taken into account, and that they will not generally lead to systematic errors.

First consideration will be given to a pure engineering problem, the problem from optimal control theory
of finding the way to bring a system from a stable point to some given point requiring the least energy
expenditure by the field, where the energy supplied by the driving field is8 = 1

2

∫ 0
−∞ E2(t)dt. Here the

pulse starts at some point in the past, and is over att = 0. This problem also arises in the theory of large
fluctuations in statistical physics [19]. The functional8 is then proportional to the energy input of the pulse. I
want to calculate the ‘optimal’ pulse that will bring the ion channel to a particular microconformational state
X(0) with the least expenditure of energy, that is, that corresponds to the least8. The results can be applied
much more generally, but for the present purposes I will merely state the answer for this problem: the optimal
trajectoryX̃(t) of the channel through the microconformational states is found by integrating the equation of

motion0 ˙̃X = H ′[ X̃(t)] which is in fact the time-reversed equation of motion for the channel in the absence
of a driving field, and the optimal pulse itself is given byẼ(t) = 20H ′[ X̃(t)]/Q. The equation of motion for
the optimal path is similar to the Langevin equation in the absence of the electric field except that now the
potential energy function is inverted. Since I am interested in the situation where the channel starts out near
one of the minima ofH(X), in the equation for the optimal path the system is at a local maximum. It then
goes ‘down hill’ and this motioñX(t) can be used to determine the optimal drivingẼ(t). The optimal path
and the optimal driving are unique for eachH(X).

I now have everything I need to prove the dynamical reconstruction theorem, which I will state in a very
straightforward, and practical way. By making use of the equation for the optimal path and the electric field

above, as well as the equation of the dynamics of the system0
˙̃X = −H ′[ X̃(t)]+QẼ(t), I obtain the following

mathematical relations,

H [ X̃(t)] = Q2
∫ t

−∞
Ẽ2(τ )dτ, X̃(t) = (Q/20)

∫ t

−∞
Ẽ(τ )dτ, 0 = (Q/2X̃(0))

∫ t

−∞
Ẽ(τ )dτ. (3)

The first two of these can be used to determine the unknown quantityH(X) from the quantities,Q, 0, and
Ẽ(t). The last of these just specifies the coefficient of friction in terms of the final pointX̃(0).

It is possible to rewrite these equations in terms of the quantities that most electrophysiologists currently
use. The voltage across the membrane isV(t) = λE(t), whereλ is the membrane thickness. I introduce the
dimensionless coordinatex = X/λi j whereλi j is the physical distance between the potential minima of the
i th and potential barrier. The gating charge of this transition is given byqi j = λi j Q/λ. We haveX(0) = λi j

where the initial pointX(−∞) is set at the origin, and where the energy barriers are1Ui j . Combining all of
these

h[ x̃(t)] =
∫ t

−∞
Ṽ2(τ )dτ

[∫ 0

−∞
Ṽ2(τ ′)dτ ′

]−1

, x̃(t) =
∫ t

−∞
Ṽ(τ )dτ

[∫ 0

−∞
Ṽ(τ ′)dτ ′

]−1

(4)

is obtained, and whereh(x) = H(x)/1Ui j is a dimensionless energy function. The gating charge can also be

determined uniquely. Since it is known that thei -to- j transition has been excited,qi j =
∫ 0
−∞ Ĩ g(t)dt, where

Ĩ g(t) is the measured gating current during the optimal pulse.
What this section shows is that not only can the standard parameters of interest to electrophysiologists

studying channels at the level of a discrete Markov process be unambiguously determined, but details of the
microscopic motion, namely the shape of the actual energy functionh(x) can be determined from the optimal
voltage pulseṼ(t). While the former amounts to a resolution of the problems of ambiguity that lead to such
great difficulties with current electrophysiological techniques, the latter represents a level of information about
the channel dynamics that was not even previously contemplated.
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6. Applying the dynamical reconstruction theorem

I will now show how the optimal voltage pulses̃V(t) to excite and control particular transitions in ion
channels can be determined experimentally. This can be done even though the microscopic motions of the
gating mechanism are not observed directly. It is merely necessary to ascertain that the channel passed through
the transition state, that is, to ascertain that the field pulse is the optimal pulse to cause a transition to a new
conformational state.

Electrophysiologists already have the ability to observe channels at the level of the conformational states.
In the present situation the channels are prepared in the resting state (e.g. C1 in Fig. 1) by applying a large,
negative conditioning potential for long enough time. After application of a pulse the percentage of channels
in the new state (e.g. C2 in Fig. 1) can be ascertained in the following way. Immediately upon termination of
the pulse the voltage is returned to the initial value and the gating current is measured. Channels that were
excited to C2 will now, over the course of several ms, relax back to state C1 via thermal activation over the
barrier between them. This will be observed as a pure exponential decay of the gating current for large enough
hyperpolarizations of the voltage. The coefficient of this decay is proportional to the probability of inducing a
transition via the initial pulse. An experimental search can then be performed for the optimal pulse that leads
to a subsequent pure decay of the gating current upon repolarization of the potential.

It still remains to explain how the optimal pulses are determined experimentally. The problem is well
defined in the sense that we can merely start guessing the answer, and gradually improve over time since
the ‘quality’ of the guess can be determined experimentally by defining an experimental cost functional
9 = (k(V(t))− k0)

2+ ∫ 0
−∞ V2(t)dt, wherek(V(t)) is the coefficient of the exponential decay of the gating

currentIg(t) = k exp(−t/τ) subsequent to application of the pulseV(t), t ∈ [−∞,0], andk0 is the maximum
amplitude of this decay. This quantity will be zero iffV(t)→ Ṽ(t), so the search might be conducted randomly
for the pulse with the smallest9. This amounts to a variational principle that can be used to determine the
microconformational dynamics of the channel, hence dynamical reconstruction.

However, the search can be performed much more efficiently than that. Guessesu(x) can be generated
for the shape of the dimensionless energy functionh(x). The optimal pulses for this potential can then
be computationally determined, and applied to the ion channel. When the optimalu(x) is found, it is the
unknownh(x) sought for. To do this it helps to have a simple way of parametrizing the trial functions
u(x). Recalling that 0≤ x ≤ 1, whereh(0) = 0 andh(1) = 1, we can use a modified Fourier expansion
u(x) = x +∑∞n=1 an sin(2πnx) where the first term controls the rise of the energy function from 0 to 1, and
the rest of the terms control the shape of the function. In practice we can truncate this series at an appropriate
point. In this case the potential is described by then + 1 parametersa0, . . . ,an, wheren can be chosen as
large as is needed.

The optimal path is determined by first integrating˙̃x = h′[ x̃(t)] in terms of the dimensionless coordinate
and energy, where the dimensionless times = t/τ has been introduced whereτ = 0λ2

i j /1Ui j . Remember
that this equation is the time-reversed version of the regular dynamics (here the sign of the potential energy
is reversed). Since the channel starts at an energy minima, it is at a local maxima in the equation for the
optimal path. The process of the channel escaping over the energy barrier between the states is then described
in this equation as traveling down hill in the time-reversed equation for the optimal path. We then have
˙̃x = 1 +∑∞n=1 2πnan cos(2πnx), where x̃u is the optimal path for the trial potentialu(x). The optimal
pulse is then given bỹVu(t/τ) = V0h′[ x̃u(s)] = V0

˙̃xu(t/τ), whereV0 = 20λ1Ui j /Qλi j . There are thus
two additional parameters, a timeτ and a voltageV0 related to the fundamental properties of the channel as
described above that go into the search for the optimal pulseṼ(t). This of course is simply the price that must
be paid for the simplification of limiting the search over dimensionless potential and coordinates variables.

Having now guessed a potential in the form of the parametersτ,V0,a0, . . . ,an the trial optimal voltage
pulse,Ṽu(t)[τ,V0,a0, . . . ,an] is then applied to the channels in a macropatched cell using the electrophysio-
logical apparatus and the corresponding cost function9[τ,V0,a0, . . . ,an] measured. The process is repeated
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Fig. 4. Numerical illustration of optimal control and dynamical reconstruction showing A, convergence of potential to the correct
potential, B, the optimal path and C, the optimal voltage pulse.

many times in a search for the parameters that come as close as possible to9[τ̃ , Ṽ0, ã0, . . . , ãn] = 0. The
τ̃ , Ṽ0, ã0, . . . , ãn then determine the quantity we seek, the energy function of the transition from statei to
state j .

Through an analysis of this problem I have come up with a quite efficient algorithm for determining the
optimal parameters. It involves using a simulated annealing genetic search analogous to the one described
in [11] (supplementary material). The algorithm makes a random search of parameter space with an ever-
decreasing search radius. Parameters

∏ = (τ,V0,a0, . . . ,an) are initially chosen at random, or according to
some preliminary information, and a number of random variations (‘offspring’) are generated from this initial
set. At the end of each generation the model with the smallest cost9 is chosen to act as the new seed for the
next generation. Thus there is a survival of the ‘fittest’, hence the name genetic algorithm. The new parameters∏

k+1 at generationk+ 1 are ‘bred’ from the old parameters
∏

k at generationk, via the following stochastic
rule:

∏i
k+1 =

∏i
k[1+σik exp(−rak)] whereσik are uniform random variables on the intervalσik ∈ [−1,1],

where 0≤ 1 ≤ 1, andra is the annealing rate which sets the convergence rate of the algorithm. New values
for the random variables are chosen for each parameter indexed byi , and for each new generation indexed by
k. The parameters converge in finite time to nearly fixed values, and the program is terminated after a fixed
number of generations.

The technique will be demonstrated by a numerical simulation of the method using the same algorithms.
In this case the ‘experimental apparatus+ ion channels’ is model by an equatioṅX = −H ′(X) + V(t).
Figure 4A shows a picture of the ‘mystery’ potentialH(X) along with the progressive approximations that



Superlattices and Microstructures, Vol. 23, No. 3/4, 1998 477

are made of it using optimal control and dynamical reconstruction. The trial potential was modeled in the
form described above with the potential series truncated atn = 2 terms. Figures 4B and C show the shapes
of the optimal path of the system and the shape of the optimal pulse.

A potential source of error are the small thermal fluctuations in the field that will occur during the application
of the pulse. It is easy to see that some of these fluctuations will tend to prevent the channel from making
the transition, while others will tend to enhance the transition. Assurance will be needed that these small
fluctuations do not bias the transition in such a way that will lead to systematic errors in the determination
of the energy function. This problem can be analyzed by considering the effects of small fluctuations about
the optimal pulse. I make the substitutionẼ(t)→ Ẽ(t) +√20kT f(t) where

√
20kT f(t) are the thermal

fluctuations required by the fluctuation dissipation theorem as described in the section on Langevin equations.
Substituting this into the dynamical equation for the channel gating along withX̃(t)→ X̃(t)+ε(t)whereε(t)
is the error caused by the thermal fluctuations the stochastic equation for the error,0ε̇ = −H ′′[ X̃(t)]ε(t)+
Q
√

20kT f(t) is obtained. This is the equation for a thermally fluctuating particle in the totally symmetric,
time-dependent potential9(t, x) = H ′′[ X̃(t)]ε2/2. It is easy to see that the average error in such a symmetric
potential vanishes,〈ε(T)〉 = 0, so the fluctuations are just as likely to lead to lowering or raising of the required
energy. Thus, a more accurate way of defining our cost function would be one where the optimal pulse only
leads to half of the population changing states, and where the cost is defined as9 = (k−k0/2)2+

∫ 0
−∞ V2(t)dt.

The total error should vanish when the new cost function is used when the thermal fluctuations are small since
the measurement is made over a large ensemble of channels.

In conclusion it is quite interesting to note, in line with my original goal of describing the ‘inverse’
of Landauer’s blowtorch, that the optimal voltage pulse, and the optimal thermal fluctuation that leads to
thermally activated escape, have exactly the same shape. They are in fact equivalent in every way since the
calculations that lead to both processes are identical. A thermally activated fluctuation occurs by a random
search (by the fluctuating system itself) over all possible fluctuations until the optimal one is found whereas,
in the case of optimal control, our search is more confined and more efficient. Thus at the microscopic level
it turns out that not only can Landauer’s blowtorch principle be inverted, but that nature herself makes use of
this fact.
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