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Self-Consistent Microscopic Theory of Fluctuation-Induced Transport
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A Maxwell's demon type “information engine” that extracts work from a bath is constructed
from a microscopic Hamiltonian for the whole system including a subsystem, a thermal bath, and a
nonequilibrium bath of phonons or photons that represents an information source or sink. The kinetics
of the engine is calculated self-consistently from the state of the nonequilibrium bath, and the relation
of this kinetics to the underlying microscopic thermodynamics is established.

PACS numbers: 05.60.+w, 05.40.+j, 87.10.+e

Processes in which some of the energy in a nonequiretic description are allowed by the underlying laws of
librium bath is transformed into work at the expense ofphysics and how these kinetic descriptions are related to
increased entropy are of great interest in a number of imthe state of the bath and its fundamental thermodynamic
portant areas, but the study of the kinetics of such proproperties.
cesses is complicated by the fact that no principles of the We will consider a particle (subsystem) with position
power and generality of those of equilibrium statistical 9 coupled to a thermal “Brownian” batt, representing
mechanics exist for such cases. A number of semiheurighe thermal background environment of the engine, and
tic type models have appeared recently that have servead a nonequilibrium batB. As we will demonstratethe
as illustrations that time correlated fluctuations interactnonthermal part of the energy in batB can be viewed
ing with a spatial asymmetry are sufficient conditions toas a source or sink of negentropy (physical information)
give rise to transport [1-3]. An application of this idea that allows the engine to operate, while the thermal parts
has recently been utilized experimentally as a new typef both baths provide the actual energy, as in the case of
of molecular separation technique [4]. In addition, it is Maxwell's demon.The Hamiltonian for the entire system
clear that spatial asymmetry is a necessary requirememtill be given by
only when all the odd moments of the fluctuations (in- M . 1 .
cluding orders higher than first) vanish, and that transport H = 7Q2 +UQ) + Ha + EZ(YI? + 0iYy)
will generally occur even in the absence of a spatial asym- k
metry if this requirem_ent is not met [5]. . + Hipa — eV(Q)ZYk. (1)

These models, which come under the general heading P
of “fluctuation induced transport,” are usually based on arhe first two terms on the right hand side describe the
reduced description of the noisy overdamped motion of &ubsystem, wher#f is the mass of the subsystens 4
particle in a periodic potential. The nonequilibrium ef- is the Hamiltonian for the Brownian bath. The fourth
fects of the irreversibléss > 0) interaction of the system term describes the batB, which is represented as bath
with a nonequilibrium bath are modeled in various ways.of linear oscillators, with frequency spectruma,}. The
A net current appears as a consequence of the nonequést two terms are the interaction of the subsystem with
librium effects of the driving, even though the averagethe baths, wheres is a coupling constant. The form
driving force vanishes. In this way these nonequilibriumof the nonequilibrium battB, that of a set of phonons,
fluctuations can be used to do work. was chosen for both simplicity and because of its generic

This previous work has focused on phenomenologyrelationship to many condensed matter type systems.
and no attempt was made to formulate self-consisterxtensions of this approach to higher dimension (more
models. Since the choice of the kinetics of the reducegyross variables) are straightforward.
system is somewhat arbitrary, it is often difficult to know  The evolution ofB is given by
whether such descriptions are appropriate, or even al-
lowed by the microscopic laws of physics. In order )
to treat these models, self-consistently reduced descrip- € . _
tions need to be carefully derived fromymicroscopic con-p * o /0 drV(Q(n) sine(t = 1), (2)
siderations since macroscopic equilibrium kinetics is novhereA, and ¢, are the initial amplitudes and phases of
longer applicable. Here we construct a special microthe oscillators. This equation can be used to eliminate
scopic model that contains an explicit description of thethe oscillator modes and to obtain a description of the
bath as well as the subsystem and allows a rigorous derariable 0 [6]. We will assume that the interaction of
termination of the kinetics. This model can be used tahe subsystem withA is that of a Brownian particle
more fully explore the question of what types of ki- and that the frequency spectrum of the oscillator b&th

Yk(t) = Ak COS(a)kt + ¢k)
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is quasicontinuous with a frequency densitiw) of the U(Q)
Debye type b. b,
_ 3w2/2w3, |a)| = w,, : :
plw) = {O, lo| > w., 3)

which is regularized by a cutoff at high frequeney that

is assumed to be larger than any typical frequency of the
gross variable. Since the bath is quasi-infinite, we can
assume that the state of the bath does not change on time
scales of interest as a result of its interaction with the
subsystem. After elimination of the bath variables from
the equations of motion we obtain a nonlinear Langevin
equation for the subsystem, FIG. 1. Typical dressed ratchet potentialQ).

MO + T(Q)0 + U'(Q) = £at) + V'(Q)éz(1), (4)

where T(Q) =Ta + [V(Q)FT'5.£a(r) is Gaussian gecond law of thermodynamics, which requires that no
white noise, net work can be extracted from a system in thermal
(Ea()y =0, (£a()éa(s)) =2T2kT8( — s), (5) equilibrium. Work can be extracted from the system
via a Carnot type engine that runs off of two baths at
different temperatures. Our system can operate as such
(Eg(1)) =0, &(1) = (£5(1)é5(0)), an engine ifB is prepared in a quasithermal state, that is,
© where the temperature & is not necessarily equal to the
d(w) = f dr exp(iowt)p(r) = 4Tzu(w), (6) temperature of the baﬂﬂ(T_a& T). The equipartition of
= energy then gives(w) = kT /2, é5(t) is Gaussian white
where u(w) = (w’A*(w))/2 is the energy density that noise with(¢5(1)) = 0, ¢() = 2I'zkT5(r), and Eg. (7)
depends explicitly on the preparation of the bath. Injs Markovian, and thus amenable to standard techniques.
addition, the “bare” potential is now dressed by theThe evolution of the probability density(Q,t) for the

oscillator bath/(Q) = U(Q) — (w./7) T3V?*(Q). Here, system described by Eq. (7) is then given by the Fokker-
for simplicity, we assume a random distribution of initial planck equation,

phases of the oscillators, which ensures that the noise is }

Gaussian. The only approximation that has been made in  9,p = 9o{U'(Q)/T(Q) + kTao[D(Q)/T(Q)]}p .

going from Egs. (1)—(3) to Egs. (4) and (5) is neglect of T2

the Poincaré recurrence time of the system, and Eq. (7) DE) =1+ riz/Ta)lV (/Q)] 5

follows from the random phase assumption. I+ Ts/Ta)[VI(Q)]
For the purposes of this Letter we will consider only ,\ hare, — T — T)/T.

the overdamped'a /M > 1) case, so that Equation 8 can be solved for the steady-state solution

[(0)0 = -U'(Q) + £€a(t) + VI(Q)ég(r).  (7)  with periodic boundary conditions,(x) = p,(x + A) and
normalization/*"* p,(x) dx = 1[7]. This yields an exact
expression for the average velocity

andéz(z) is a Gaussian noise with

(8)

The inclusion of the thermal Brownian batil plays
an important role here since this description will break

down whenI'; = 0. We will use this equation to study ©) - kT[1 — exp(8/kT)]

fluctuation induced transport in a system whére) = fg dy e~ YO)/KT fﬁ“ dx T2(x)eYW/KT /D (x)
U(Q + A) andV(Q) = V(Q + A), so that the Hamilton- * Uy) )

ian is invariant under the translatian — Q0 + A. As a Y(x) = 2y dy, & =W¥(0) — ¥(A). 9)
consequencel/(Q) = U(Q + A). A portion of a typi- D(y)

cal “dressed” ratchet potentiél(Q) is pictured in Fig. 1. It is easy to see from Eq. (9) that when the temperature
Even though the average force on the particle vanishes, difference between the baths is z€ro= 0), the current
net current will be produced, which if directed against avanishes identically (sinc& = 0). This is to be expected
load force can be used to do work. The basic theoreticadnd, of course, is a consequence of the second law. The
problem is to find the mean velocit@(z)) in the subsys- current will also vanish in the limif'z/T"4 — 0.
tem given the shape @f(Q) andV(Q) and the properties From this point on we will only consider cases where
of the noise termg 4 (1) and &z (z). the characteristic noise intensiti#gsand D = max®(w)
Since we have started with an explicit microscopicare small in comparison to the well depti/ = U(b) —
(time reversible) Hamiltonian, if the system as a wholelU(a), which can be ensured by making the coupling
is in equilibrium the current must vanish. Therefore,between the system and the bath small enough. This
a stationary current can appear only if the system isituation is particularly interesting since analytic results
out of equilibrium. This is a basic consequence of theare possible for both Markovian, and non-Markovian
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situations [2,8], and since the basics physics is illustratetramers expression for this prefactor valid for white-
most clearly. noise driven systems.

ForT,D < AU, most of the time the system performs The direction of the current is determined by the
small-amplitude fluctuations about the minima of theinterplay of the shapes of the potential and energy density
potential. Occasionally it will “jump” from the minimum distributionu(w). Just as the current in the thermal ratchet
it occupied to the one on the right or left, with the changes sign whem changes sign, the current in the
probabilities per unit timew. and W_, respectively. correlation ratchet changes sign whef(0) changes sign.
These jumps give rise to the average velodiy) =  More details can be found in [2]These current reversals
AWL — Wo). are a new phenomenon due to activation effects and are

For the Markovian case described in Eg. (7) the tranentirely unrelated to the current reversals found&.
sition rates can be calculated via standard techniques Although the correctionsy. F”(0) to the activation

and evaluated by steepest descents. We obtain=  energy are small compared to the main term, they are
Wy exp(rB=/kT), where not small compared td7, and can chang@. by orders
T @0 )] pf magnitude. .Excepting the special case Wh_é’t(eg)
Wg = B Y — exp(—AU/kT) (10) is symmetric with respect t@, the transitions in one

direction will typically dominate overwhelmingly over the
transitions in the opposite direction. The optimal rate
. (Q) = AW is attained when all the thermally activated
- transitions are in one direction. Thus, while the vast

e = (FB/Fﬂ)fa U@ V(0P d. (1) majority of the energy in bothA and B is thermally

These transition rates can be further expanded idistri_buted in this near-equilibrium sityation i_t ig the
owers ofI's /T4, but, for our present purpose, this is rPelatlvely small amount of energy that is not distributed
P B A REL T P purpose, thi thermally, or equivalently the negentropy, that allows the
not particularly enlightening. The mean velocity is glvenengine to run. On the other hand, if the thermal energy
by . were removed the engine would immediately stop running
(Q) = AWk[e B /M — orB-/KT], (12)  since virtually no transitions would ever occur. It should

This expression can also be obtained from the exad?e clear from previous analysis that the force driving the
solution (9) by evaluating the integrals in the denominatoiparticle comes overwhelmingly from the thermal parts of
via steepest descent. We see that the current will flothe baths. Therefore, we must conclude that while even a
in one direction ifT < T and in the opposite direction if Vvery small negentropic source or sink B allows the
T > T. Thus, the system acts like Carnot engine, doin@ngine to operate, the thermal fluctuations provide the
work by making use of two thermal baths at differenténergy.
temperatures. As described in the preceding paragraph this system
The correlation ratchet, a system that is driven by thds an “information engine” analogous to a Maxwell's
effects of colored noise, is obtained from Egs. (6) anddemon engine that extracts work out of a thermal bath
(7) by settingu(0) = kT /2. Thus, both A andB have by rectifying the thermal fluctuations of the system.
“thermal parts” whileB has a small pani(w) — u(0) that ~Maxwell's demon is a “being” that uses information about
deviates from equilibrium. If batiB has a nonthermal the system to “choose” only those fluctuations that are
distribution over its modes, thar(w) is not constant, and helpful to make the engine run. This information, which
this manifest itself as time correlations [i.€z(s) is no  can only be acquired if the demon is not in equilibrium
longer delta correlated] and a net current will arise. with the bath [9], is used to rectify the energy already
When the bandwidth of the spectrud(w) greatly —available, but otherwise inaccessible, in the thermal bath.
exceeds the reciprocal relaxation time of the systelm=  As shown by Szilard [10], the information is acquired
U"(a), the transition probabilitiesv. can be calculated at the expense of an entropy increase of the demon, an
by an extension of the variational technique used in [2,8]0bservation that salvages the second law. Similarly it is
whereW. = W exp[—y«F"(0)/kT] and clear from the approach used here that our system does
2, work at the expense of the total increase of entropy of the
— (F_B> / CU'[V'O" + v'"O'Pdx, (13) baths and operates because of the physical information
N I'a a contained in the nonthermal energy of the bath, while
the energy is paid predominately in the currency of the
and where F(w) = kT /4u(w), F"(w) = d*F(0)/dw?  thermal fluctuations.
with [F"(0)/F(0)] < ;. The mean velocity In the example given by Brillouin in [9] the demon
N —y F'O)/KT _  —y_F"(0)/kT uses light photons to determine the location of a particle
2 )‘WK[e ¢ ] (14) and then uses this information to extract work from the
We have neglected the small corrections to the prefact@ystem. The demon needs a source of light that is not
in Wx due to the noise color and used the standardn equilibrium with the bath in order to distinguish the

is the Kramers activation rate, with’ = U(b) — U(a),
and where for small'z /T 4,
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Thus the semiheuristic treatments of [2,8] can be made
u; (w) , o
self-consistent, and the relationship between thermody-
namic quantities and reduced kinetic descriptions such as
Eq. (4) can be established.
The free energy of the whole system is given by
F = U + TH,. However, in the nonequilibrium casg
is generally not sufficient to calculate rates, as should be
clear from the above example. While (near equilibrium)
the free energy does play the role of a stochastic Lya-
punov function, it does not necessarily play a kinetic role
Q] analogous to the one the energy plays in equilibrium sys-
FIG. 2. Physical informationu;(w) density near zero fre- tem;, and consequently the !(inetics L{gually cannot be de-
quency. The generic cases where the phonon bath acts as imined from thermodynamics quantities of the bath. In
information source and the engine runs forward and where iaddition, when more than one gross variable is considered
acts as a sink and the engine runs backward are shown. and when the bath is not in thermal equilibrium the re-
duced descriptiomeed not possess a local “energy-type”

signal from the thermal background radiation. The modefunction of the gross variables in the Langevin equations
presented here can be regarded as a simplified picture gf€.. the mean “force” is not necessarily curl free) [11].
a bath of photons coupled to a particle in a thermal bathThis is true in our exampleven when the state of the
By addmg or removing photons (energy) from a Systerrpath can be described by a scalar thermOdynamiC quan-
in thermal equi”brium an information source or sink is tlty, such as in the quaSithermaI situation discussed above.
created of the same type as described by Brillouin. The | am particularly indebted to Mark Dykman for many
subsystem in this case plays the role of the demon anfuitful conversations and suggestions.

allows the information to be converted to work.

This observation is made precise in the following way.
Once the energy density over the frequency spectrum
of the phonon bath(w) = (w?A%(w))/2 is known, ther-  [1] M. Magnasco, Phys. Rev. Leff1, 1477 (1993); J. Prost,
modynamic quantities can be calculated. Near equilib- ~ J--F. Chauwin, L. Peliti, and A. Ajdari, Phys. Rev. Lett.
rium, as is the case for the above approximation, nearly 72, 2652 (1994).
all of the energy in the two baths is in a thermal state, [ I\/Il.gl\élaMnlonas and D.I. Dykman, Phys. Lett. A83 65
and any entropy increas&S will not change the tem- ( )
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trgPY) in the phonon bath is given |sotherr_nally Hy = [4] J. Rousselet, L. Salome, A. Ajdari, and J. Prost, Nature
/" dwui(w), whereu;(o) = u(w)/T — k/2is the infor- (London) 370, 412, 1994.

mation density. Since we have s®t0) = 2I'gkT, the [5] D. Chialvo and M. M. Millonas (unpublished).

sign of the information contained in the low frequency [6] For derivations in a similar spirit see H. Mori, Prog.
part of the spectrum is determined by the curvature of the ~ Theor. Phys.33, 423 (1965); M.I. Dykman and M.A.

engine runs forward
FO<0

F(0)>0

engine runs backward

information density at zero frequency,(0) = —kF"(0) Krivoglaz, Phys. Status Solidi48, 497 (1971); R.
as illustrated in Fig. 2. The situatiof”(0) < 0 implies Zwanzig, J. Stat. Phys, 215 (1973); K. Kawasaki, J.
a low frequency “source” of information i, and while Phys. A6, 1289 (1973); H. Grabert, P. Hanggi, and P.

F"(0) > 0 a “sink” in B as is illustrated in Fig. 2. As T.alkner, J._ Stat. Phys22, 537 (1980), and references
cited therein.

was shown above, the engine will run in opposite direc- [7] M. Biittiker, Z. Phys. B68, 161 (1987)

tions in these two cases. Whél > 0 information flows 8] Yl Dykmr;m,'Phys.. Rev. A2, 2020 ('1990).

out of B and the engine turns in one direction. The first (9] | Brillouin, J. Appl. Phys.22, 334 (1951).

is just thermodynamics, while the second is a result of thg10] L. Szilard, Z. Phys53, 840 (1929).

previous calculations. Just the opposite is the case whep11] M.I Dykman, M.M. Millonas, and V.l. Smelianskiy,
H, < 0 and when the system is in equilibrius, = 0. Phys. Lett. A195 53 (1994).

13



