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Self-Consistent Microscopic Theory of Fluctuation-Induced Transport
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(Received 23 May 1994)

A Maxwell’s demon type “information engine” that extracts work from a bath is constructed
from a microscopic Hamiltonian for the whole system including a subsystem, a thermal bath, and a
nonequilibrium bath of phonons or photons that represents an information source or sink. The kinetics
of the engine is calculated self-consistently from the state of the nonequilibrium bath, and the relation
of this kinetics to the underlying microscopic thermodynamics is established.

PACS numbers: 05.60.+w, 05.40.+j, 87.10.+e
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Processes in which some of the energy in a noneq
librium bath is transformed into work at the expense o
increased entropy are of great interest in a number of i
portant areas, but the study of the kinetics of such pr
cesses is complicated by the fact that no principles of t
power and generality of those of equilibrium statistica
mechanics exist for such cases. A number of semiheur
tic type models have appeared recently that have serv
as illustrations that time correlated fluctuations interac
ing with a spatial asymmetry are sufficient conditions t
give rise to transport [1–3]. An application of this idea
has recently been utilized experimentally as a new ty
of molecular separation technique [4]. In addition, it i
clear that spatial asymmetry is a necessary requirem
only when all the odd moments of the fluctuations (in
cluding orders higher than first) vanish, and that transpo
will generally occur even in the absence of a spatial asy
metry if this requirement is not met [5].

These models, which come under the general head
of “fluctuation induced transport,” are usually based on
reduced description of the noisy overdamped motion of
particle in a periodic potential. The nonequilibrium ef
fects of the irreversiblesdS . 0d interaction of the system
with a nonequilibrium bath are modeled in various way
A net current appears as a consequence of the none
librium effects of the driving, even though the averag
driving force vanishes. In this way these nonequilibrium
fluctuations can be used to do work.

This previous work has focused on phenomenolog
and no attempt was made to formulate self-consiste
models. Since the choice of the kinetics of the reduc
system is somewhat arbitrary, it is often difficult to know
whether such descriptions are appropriate, or even
lowed by the microscopic laws of physics. In orde
to treat these models, self-consistently reduced descr
tions need to be carefully derived from microscopic con
siderations since macroscopic equilibrium kinetics is n
longer applicable. Here we construct a special micr
scopic model that contains an explicit description of th
bath as well as the subsystem and allows a rigorous d
termination of the kinetics. This model can be used
more fully explore the question of what types of ki
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netic description are allowed by the underlying laws
physics and how these kinetic descriptions are related
the state of the bath and its fundamental thermodynam
properties.

We will consider a particle (subsystem) with positio
Q coupled to a thermal “Brownian” bathA, representing
the thermal background environment of the engine, a
to a nonequilibrium bathB . As we will demonstrate,the
nonthermal part of the energy in bathB can be viewed
as a source or sink of negentropy (physical informatio
that allows the engine to operate, while the thermal par
of both baths provide the actual energy, as in the case
Maxwell’s demon.The Hamiltonian for the entire system
will be given by

H ­
M
2

ÙQ2 1 UsQd 1 HA 1
1
2

X
k

s ÙY2
k 1 v2

kY 2
k d

1 HintA 2 eVsQd
X

k

Yk . (1)

The first two terms on the right hand side describe t
subsystem, whereM is the mass of the subsystem.HA

is the Hamiltonian for the Brownian bath. The fourt
term describes the bathB , which is represented as bat
of linear oscillators, with frequency spectrumhvkj. The
last two terms are the interaction of the subsystem w
the baths, wheree is a coupling constant. The form
of the nonequilibrium bathB , that of a set of phonons,
was chosen for both simplicity and because of its gene
relationship to many condensed matter type system
Extensions of this approach to higher dimension (mo
gross variables) are straightforward.

The evolution ofB is given by

Ykstd ­ Ak cossvkt 1 fkd

1
e

vk

Z t

0
dt V sssQstdddd sinvkst 2 td , (2)

whereAk andfk are the initial amplitudes and phases o
the oscillators. This equation can be used to elimina
the oscillator modes and to obtain a description of t
variable Q [6]. We will assume that the interaction o
the subsystem withA is that of a Brownian particle
and that the frequency spectrum of the oscillator bathB
© 1994 The American Physical Society
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is quasicontinuous with a frequency densityrsvd of the
Debye type

rsvd ­

Ω
3v2y2v3

c , jvj # vc,
0, jvj . vc,

(3)

which is regularized by a cutoff at high frequencyvc that
is assumed to be larger than any typical frequency of t
gross variable. Since the bath is quasi-infinite, we ca
assume that the state of the bath does not change on t
scales of interest as a result of its interaction with th
subsystem. After elimination of the bath variables from
the equations of motion we obtain a nonlinear Langev
equation for the subsystem,

MQ̈ 1 GsQd ÙQ 1 Ũ0sQd ­ jAstd 1 V 0sQdjB std , (4)

where GsQd ­ GA 1 fV 0sQdg2GB , jAstd is Gaussian
white noise,

kjAstdl ­ 0, kjAstdjAssdl ­ 2GAkTdst 2 sd , (5)

andjB std is a Gaussian noise with

kjB stdl ­ 0, fstd ­ kjB stdjB s0dl ,

Fsvd ­
Z `

2`
dt expsivtdfstd ­ 4GB usvd , (6)

where usvd ­ kv2A2svdly2 is the energy density that
depends explicitly on the preparation of the bath. I
addition, the “bare” potential is now dressed by th
oscillator bathŨsQd ­ UsQd 2 svcypd GBV 2sQd. Here,
for simplicity, we assume a random distribution of initia
phases of the oscillators, which ensures that the noise
Gaussian. The only approximation that has been made
going from Eqs. (1)–(3) to Eqs. (4) and (5) is neglect o
the Poincaré recurrence time of the system, and Eq.
follows from the random phase assumption.

For the purposes of this Letter we will consider onl
the overdampedsGAyM ¿ 1d case, so that

GsQd ÙQ ­ 2Ũ 0sQd 1 jAstd 1 V 0sQdjB std . (7)

The inclusion of the thermal Brownian bathA plays
an important role here since this description will brea
down whenGA ­ 0. We will use this equation to study
fluctuation induced transport in a system whereUsQd ­
UsQ 1 ld and V sQd ­ V sQ 1 ld, so that the Hamilton-
ian is invariant under the translationQ ! Q 1 l. As a
consequence,̃UsQd ­ ŨsQ 1 ld. A portion of a typi-
cal “dressed” ratchet potentialŨsQd is pictured in Fig. 1.
Even though the average force on the particle vanishes
net current will be produced, which if directed against
load force can be used to do work. The basic theoretic
problem is to find the mean velocityk ÙQstdl in the subsys-
tem given the shape ofUsQd andV sQd and the properties
of the noise termsjAstd andjB std.

Since we have started with an explicit microscopi
(time reversible) Hamiltonian, if the system as a who
is in equilibrium the current must vanish. Therefore
a stationary current can appear only if the system
out of equilibrium. This is a basic consequence of th
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FIG. 1. Typical dressed ratchet potentialŨsQd.

second law of thermodynamics, which requires that n
net work can be extracted from a system in therm
equilibrium. Work can be extracted from the system
via a Carnot type engine that runs off of two baths
different temperatures. Our system can operate as s
an engine ifB is prepared in a quasithermal state, that i
where the temperature ofB is not necessarily equal to the
temperature of the bathAsT fi Td. The equipartition of
energy then givesusvd ­ kTy2, jB std is Gaussian white
noise with kjB stdl ­ 0, fstd ­ 2GB kTdstd, and Eq. (7)
is Markovian, and thus amenable to standard techniqu
The evolution of the probability densityrsQ, td for the
system described by Eq. (7) is then given by the Fokke
Planck equation,

≠tr ­ ≠QhŨ 0sQdyGsQd 1 kT≠QfD sQdyGsQdgjr ,

D sQd ­ 1 1
rsGB yGAd fV 0sQdg2

1 1 sGByGAd fV 0sQdg2
, (8)

wherer ­ sT 2 TdyT .
Equation 8 can be solved for the steady-state soluti

with periodic boundary conditionsrssxd ­ rssx 1 ld and
normalization

Rx1l

x rssxd dx ­ 1 [7]. This yields an exact
expression for the average velocity

k ÙQl ­
kTf1 2 expsdykTdgRl

0 dy e2Cs ydykT
Ry1l

y dx G2sxdeCsxdykT yD sxd

Csxd ­
Z x U 0s yd

D s yd
dy, d ­ Cs0d 2 Csld . (9)

It is easy to see from Eq. (9) that when the temperatu
difference between the baths is zerosr ­ 0d, the current
vanishes identically (sinced ­ 0). This is to be expected
and, of course, is a consequence of the second law. T
current will also vanish in the limitGB yGA ! 0.

From this point on we will only consider cases wher
the characteristic noise intensitiesT and D ­ maxFsvd
are small in comparison to the well depthDŨ ­ Ũsbd 2

Ũsad, which can be ensured by making the couplin
between the system and the bath small enough. T
situation is particularly interesting since analytic resul
are possible for both Markovian, and non-Markovia
11
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situations [2,8], and since the basics physics is illustrat
most clearly.

For T , D ø DŨ, most of the time the system performs
small-amplitude fluctuations about the minima of th
potential. Occasionally it will “jump” from the minimum
it occupied to the one on the right or left, with the
probabilities per unit timeW1 and W2, respectively.
These jumps give rise to the average velocityk ÙQl ­
lsW1 2 W2d.

For the Markovian case described in Eq. (7) the tra
sition rates can be calculated via standard techniqu
and evaluated by steepest descents. We obtainW6 ­
WK expsrb6ykTd, where

WK ­

p
Ũ 00sadjŨ 00sbdj

2p
exps2DUykT d (10)

is the Kramers activation rate, withDŨ ­ Ũsbd 2 Ũsad,
and where for smallGB yGA,

b6 ­ sGByGAd
Z b6

a
U 0sxd fV 0sxdg2 dx. (11)

These transition rates can be further expanded
powers ofGB yGA, but, for our present purpose, this is
not particularly enlightening. The mean velocity is give
by

k ÙQl ­ lWK ferb1ykT 2 erb2ykTg . (12)

This expression can also be obtained from the exa
solution (9) by evaluating the integrals in the denominat
via steepest descent. We see that the current will flo
in one direction ifT , T and in the opposite direction if
T . T . Thus, the system acts like Carnot engine, doin
work by making use of two thermal baths at differen
temperatures.

The correlation ratchet, a system that is driven by th
effects of colored noise, is obtained from Eqs. (6) an
(7) by settingus0d ­ kTy2. Thus, bothA and B have
“thermal parts” whileB has a small partusvd 2 us0d that
deviates from equilibrium. If bathB has a nonthermal
distribution over its modes, thenusvd is not constant, and
this manifest itself as time correlations [i.e.,jB std is no
longer delta correlated] and a net current will arise.

When the bandwidth of the spectrumFsvd greatly
exceeds the reciprocal relaxation time of the systemt21

r ­
Ũ 00sad, the transition probabilitiesW6 can be calculated
by an extension of the variational technique used in [2,8
whereW6 ­ WK expf2g6F00s0dykTg and

g6 ­

√
GB

GA

!2 Z b6

a
Ũ 0 fV 0Ũ 00 1 V 00Ũ 0g2 dx, (13)

and where Fsvd ­ kTy4usvd, F00svd ­ d2Fsvdydv2,
with jF00s0dyFs0dj ø t2

r . The mean velocity

k ÙQl ­ lWK

h
e2g1F 00s0dykT 2 e2g2F00s0dykT

i
. (14)

We have neglected the small corrections to the prefac
in WK due to the noise color and used the standa
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Kramers expression for this prefactor valid for white
noise driven systems.

The direction of the current is determined by th
interplay of the shapes of the potential and energy dens
distributionusvd. Just as the current in the thermal ratche
changes sign whenr changes sign, the current in the
correlation ratchet changes sign whenF 00s0d changes sign.
More details can be found in [2].These current reversals
are a new phenomenon due to activation effects and a
entirely unrelated to the current reversals found in[3].

Although the correctionsg6F00s0d to the activation
energy are small compared to the main term, they a
not small compared tokT , and can changeW6 by orders
of magnitude. Excepting the special case whereŨsQd
is symmetric with respect toa, the transitions in one
direction will typically dominate overwhelmingly over the
transitions in the opposite direction. The optimal rat
k ÙQl ­ lWK is attained when all the thermally activated
transitions are in one direction. Thus, while the va
majority of the energy in bothA and B is thermally
distributed in this near-equilibrium situation it is the
relatively small amount of energy that is not distribute
thermally, or equivalently the negentropy, that allows th
engine to run. On the other hand, if the thermal energ
were removed the engine would immediately stop runnin
since virtually no transitions would ever occur. It shoul
be clear from previous analysis that the force driving th
particle comes overwhelmingly from the thermal parts o
the baths. Therefore, we must conclude that while even
very small negentropic source or sink inB allows the
engine to operate, the thermal fluctuations provide t
energy.

As described in the preceding paragraph this syste
is an “information engine” analogous to a Maxwell’s
demon engine that extracts work out of a thermal ba
by rectifying the thermal fluctuations of the system
Maxwell’s demon is a “being” that uses information abou
the system to “choose” only those fluctuations that a
helpful to make the engine run. This information, whic
can only be acquired if the demon is not in equilibrium
with the bath [9], is used to rectify the energy alread
available, but otherwise inaccessible, in the thermal ba
As shown by Szilard [10], the information is acquired
at the expense of an entropy increase of the demon,
observation that salvages the second law. Similarly it
clear from the approach used here that our system d
work at the expense of the total increase of entropy of t
baths and operates because of the physical informat
contained in the nonthermal energy of the bath, whi
the energy is paid predominately in the currency of th
thermal fluctuations.

In the example given by Brillouin in [9] the demon
uses light photons to determine the location of a partic
and then uses this information to extract work from th
system. The demon needs a source of light that is n
in equilibrium with the bath in order to distinguish the
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FIG. 2. Physical informationuisvd density near zero fre-
quency. The generic cases where the phonon bath acts as
information source and the engine runs forward and where
acts as a sink and the engine runs backward are shown.

signal from the thermal background radiation. The mod
presented here can be regarded as a simplified picture
a bath of photons coupled to a particle in a thermal ba
By adding or removing photons (energy) from a syste
in thermal equilibrium an information source or sink is
created of the same type as described by Brillouin. T
subsystem in this case plays the role of the demon a
allows the information to be converted to work.

This observation is made precise in the following way
Once the energy density over the frequency spectru
of the phonon bathusvd ­ kv2A2svdly2 is known, ther-
modynamic quantities can be calculated. Near equili
rium, as is the case for the above approximation, nea
all of the energy in the two baths is in a thermal stat
and any entropy increasedS will not change the tem-
perature. In this case the physical information (nege
tropy) in the phonon bath is given isothermally byHb ­Rvc

0 dv uisvd, whereuisvd ­ usvdyT 2 ky2 is the infor-
mation density. Since we have setFs0d ­ 2GB kT , the
sign of the information contained in the low frequenc
part of the spectrum is determined by the curvature of t
information density at zero frequency,u00

i s0d ­ 2kF00s0d
as illustrated in Fig. 2. The situationF00s0d , 0 implies
a low frequency “source” of information inB , and while
F00s0d . 0 a “sink” in B as is illustrated in Fig. 2. As
was shown above, the engine will run in opposite dire
tions in these two cases. WhenHb . 0 information flows
out of B and the engine turns in one direction. The firs
is just thermodynamics, while the second is a result of t
previous calculations. Just the opposite is the case wh
Hb , 0 and when the system is in equilibriumHb ­ 0.
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Thus the semiheuristic treatments of [2,8] can be ma
self-consistent, and the relationship between thermod
namic quantities and reduced kinetic descriptions such
Eq. (4) can be established.

The free energy of the whole system is given b
F ­ Ũ 1 THb. However, in the nonequilibrium caseF
is generally not sufficient to calculate rates, as should
clear from the above example. While (near equilibrium
the free energy does play the role of a stochastic Ly
punov function, it does not necessarily play a kinetic ro
analogous to the one the energy plays in equilibrium sy
tems, and consequently the kinetics usually cannot be
termined from thermodynamics quantities of the bath.
addition, when more than one gross variable is consider
and when the bath is not in thermal equilibrium the re
duced descriptionneed not possess a local “energy-type
function of the gross variables in the Langevin equation
(i.e., the mean “force” is not necessarily curl free) [11
This is true in our exampleeven when the state of the
bath can be described by a scalar thermodynamic qua
tity, such as in the quasithermal situation discussed abo

I am particularly indebted to Mark Dykman for many
fruitful conversations and suggestions.
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