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Relaxation Kinetics of Nonlinear Systems Coupled to a Nonequilibrium Bath
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The nonexponential decay of a correlation function in physical, chemical, or biomolecular complex
systems is often taken as explicit evidence for disorder. Here we show that even without disorder,
nonexponential relaxation can arise through a coupling of the primary relaxations to the “invisible”
relaxations of the rest of the system.
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In a number of poorly understood, strongly couple
systems, relaxation processes due to activation exh
nonexponential time dependence. Often the relaxati
function fstd of some initial excitation is well described
by a Kohlrausch-Williams-Watts (KWW) law,fstd ­
expf2sk1tdbg, or a power law,fstd ­ f1 1 k2tg2h . This
is to be contrasted with the exponential time dependen
of the majority of systems, which is in accord with the nor
mal equilibrium activation rate theory. Here we constru
a solvable microscopic model which exhibits nonexpone
tial relaxation, and which is also reasonably well fitted ove
appropriate time scales by either a KWW or a power law
The simple, yet generic, form of this model allows us t
explore the influence of an initial nonequilibrium excita
tion of the other degrees of freedom of a complex syste
on the relaxation of a specific quantity of interest.

Our analysis is based on the assumption that t
dynamics in question can be divided into a homogeneo
set of essentially nonlinear modes or mutually uncouple
relaxing species and into a vastly larger number
effectively linear “phonon” type modes. Here we stud
the case where the spectral density of the linear mod
takes a particularly simple form. We will consider a one
dimensional scalar field theory, and take up the problem
the point where a particular nonlinear modec0 and a set
of effectively linear modesck have been identified, and
the system has been reduced to an effective Hamilton
in these variables,

H ­
1
2

Ùc2
0 1 Usc0d 1 HB 1

1
2

X
k

s Ùc2
k 1 v2

kc2
k d

1 HintsB , c0, ckd 2 eV sc0d
X

k

ck

1 dHintsck, ck0 d . (1)

The first two terms on the right-hand side (rhs) describ
a nonlinear mode, which represents one of the primar
relaxing species in the system.HB is the Hamiltonian
for the thermal bath. The fourth term describes the line
phonon modes with frequency spectrumhvkj. The next
two terms represent the coupling of the nonlinear an
linear modes to the thermal bath and the coupling of th
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nonlinear mode to the linear modes, wheree is a coupling
constant. The last term indicates the weak nonline
phonon-phonon couplings, which we will neglect in wha
follows and treat heuristically later. Extensions of th
approach to higher dimension (more nonlinear modes)
straightforward.

We consider a purely classical interpretation ofH .
This method will be appropriate when the temperature
high enough, when̄h is small enough so that tunneling i
unimportant, and when there are no quantum coherenc
on the time scales of interest. The linear modes then ob
the classical equations of motion

c̈k 1 n Ùck 1 v2
kck ­ eV fc0stdg 1 jkstd , (2)

wheren is the dissipation coefficient of the thermal bat
of the linear modes. The fluctuating term is Gaus
ian white noise with mean zerokjstdl ­ 0 and with
correlation functionkjkstdjkssdl ­ 2nkTdst 2 sd, given
by the fluctuation-dissipation theorem, since the ba
B is assumed to be in thermal equilibrium. Here w
have assumed for simplicity purely Ohmic, frequenc
independent dissipation of the phonon modes.

The evolution of the linear modesck is given by

ckstd ­ c
s
k 1 Ake2nty2 cossvkt 1 fkd

1
e

vk

Z t

0
dt V fc0stdge2nst2tdy2 sinvkst 2 td ,

(3)

whereAk andfk are the initial amplitudes and phases o
the nonequilibrium excitations of the phonons. The fir
term represents the stationary solution for theck in the
absence of the coupling toc0, the second represents th
memory effects, and the third represents the effect
the coupling toc0.

The c
s
k must represent the stationary (long time) flu

tuations of the variablesck in the absence of the coupling
to the subsystem. This term is composed of a superpo
tion of oscillating termsc

s
kstd ­

P
k As

k cossvkt 1 f
s
kd,

with random phasesfs
k and amplitudes distributed

in proportion to the Gibbs distributionPsAs
kd ­

N21 expf2v
2
k sAs

kd2y2kT g. We will assume that the
© 1995 The American Physical Society
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interaction of the nonlinear modes with the thermal ba
is Ohmic, and that the frequency spectrum of the line
modes is semicontinuous with a frequency densityrsvd
of the Debye type,

rsvd ­

Ω
3v2y2v3

c , jvj # vc ,
0, jvj . vc ,

(4)

which is regularized by a cutoff at high frequencyvc that
is assumed to be larger than any typical frequency of
nonlinear mode. In general, the spectrum will not be
this very simple type, and the dissipation will generally b
retarded [1]. As was shown in [2], the effects discuss
here have a microscopic thermodynamic interpretation
terms of the excess physical information (negentrop
in the phonon bath. This interpretation and the effe
remains qualitatively unchanged when the spectrum
more complicated.

The equation for the gross variablec0 is

c̈0 1 gb
Ùc0 1 U 0sc0d ­ jbstd 1 eV 0sc0d

X
k

ck , (5)

where kjbstdl ­ 0, and kjbstdjbssdl ­ 2gbkTdst 2 sd.
Making use of Eqs. (3) and (4) and integrating by par
we obtain a nonlinear Langevin equation forc0,

c̈0 1 Gsc0d Ùc0 1 Ũ 0sc0d ­ jbstd 1 V 0sc0djpstd , (6)

where gb and gp are the dissipation coefficients du
to the thermal bath and the phonons on the nonline
modes. Note the distinction between the latter, and
dissipation on the phonon modes due to the external b
n. In additionGsc0d ­ gb 1 gpfV 0sc0dg2, andjpstd is
a Gaussian noise withkjpstdl ­ 0 and an energy density
(proportional to the power spectrum)

usv, sd ­
1

4gp

Z `

2`

dt kjpssdjpss 1 tdleivt

­ kTy2 1 e2nsy2fusv, 0d 2 kTy2g ,
(7)

wheres is a slow time variable. The last term describe
just the effects of the damping of the linear modes
the thermal bath. We have made the assumption t
jpstd is effectively stationary on the fast time scale o
tc, the correlation time of the noise, so that the fast a
slow time scales are well separated. The properties ofjp

now depend explicitly on the nonequilibrium state of th
phonons throughusv, td, the energy density distribution a
time t. In addition, the “bare” potential is now dressed b
the oscillator bath,̃Usc0d ­ Usc0d 2 svcypdgpV 2sc0d.
We have assumed a random distribution of initial phas
of the oscillators, which ensures that the noise is Gauss
We assumegp is small.

Equation(7) is a nonequilibrium fluctuation-dissipation
relation. It relates the properties of the fluctuating term
jpstd to the coupling constantgp (the friction coefficient
of the phonon bath on the nonlinear modes) and t
instantaneous nonequilibrium distribution of the phono
modes. While there is a vast literature on projectio
th
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techniques [3], where the last step is the assumptio
of an equilibrium distribution of the bath modes, there
seem to have been little or no work treating explicitly
the kinetics of systems coupled to a bath which itself i
not in equilibrium, particularly the case where the bath i
not even in quasithermal equilibrium. Perhaps this is du
to the formidable nature of the non-Markovian kinetics
which arises in such cases, but near enough to equilibriu
that relaxation functions can be calculated explicitly eve
for the case of an arbitrary perturbation of the bath, as w
will presently show. Thus, instead of simply treating the
relaxation of a few nonlinear degrees of freedom couple
to an equilibrium bath, we are calculatingthe effect of
the relaxation of the rest of a semi-infinite dimensiona
nonequilibrium system on the degrees of freedom
interest.

For the purposes of this paper we will only conside
the overdamped (gb , large) case in the limit wheregp is
small. In this case thegp dependent terms which arise
(due to thec0-dependent noise) when the overdampe
limit is taken [4] can be neglected and

Gsc0d Ùc0 1 Ũ 0sc0d ­ jbstd 1 V 0sc0djpstd . (8)

The picture we have in mind is that the system i
perturbed by some external shock at times ­ 0. This
shock has the effect of exciting the nonlinear mode int
the metastable stateS1 (picture in Fig. 1) and also of
exciting the linear modes into a nonequilibrium state
Here we assume that the effect ofc0 on theck is small
enough to be neglected.

Equation (8) resembles the heuristic fluctuating barrie
model of Steinet al. [5], which was also an attempt to un-
derstand some aspect of nonexponential relaxation. T
fluctuating barrier models have their spiritual roots in th
pioneering work of Landauer [6]. The coupling energy
V sc0d of the nonlinear mode to the phonons is in fac
the fluctuating part of the barrier. However, our equatio
is derived from microscopic considerations rather tha

FIG. 1. Typical dressed effective potential̃Usc0d of the
nonlinear modec0. The fluctuating part of the potential is
indicated schematically.
1111
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heuristic ones. In order to maintain self-consistency
the formulation in terms of a Langevin equation, it is nec
essary that the friction be spatially varyingGsc0d [7]. The
analysis presented here reveals in a clear way the ori
of interesting effects in these models: They arise only
cases where the system which produces the fluctuation
not in thermal equilibrium. The fluctuating part of the po
tential is indicated schematically in Fig. 1. The shape
V sc0d will of course have generally a more complicate
form than the one pictured here.

The noise variables,jbstd and jpstd, are mutually
uncorrelatedkjbstdjpstdl ­ 0, and the probabilities of
various processes can be calculated via path integrat
over the joint probability density functional

P ssd fjp , jbg ~ exp

∑
2

Z
L ssddt

∏
.

L ssd ­
1

4gbkT
j2

bstd 1
1
2 jpstdF̂ssdjpstd ,

(9)
subject to the constraint of Eq. (8) and the bounda
conditions of the process of interest. As shown in [8
the operatorF̂ssd is obtained via the substitutionv !

2idydt in Fsv, sd ­ 1y4gpusv, sd.
This path integral formulation [Eqs. (8) and (9)

represents a complete formal description of the dynam
of the nonlinear modes. Equations (8) and (9) are t
description of anon-Markovian system.While there
exists a rather large literature in which the non-Markovia
effects of noise are incorporated within Markovian
descriptions (such as the Fokker-Planck equation) via t
inclusion of “auxiliary dimensions” or virtual particles
[9], we do not make use directly of such technique
here. These techniques are most useful when noise ha
simple power spectrum (such as Ornstein-Uhlenbe
noise), which allows for a small set of auxiliary di-
mensions. Because of the arbitrary shape of the pow
spectrum in the present case, there will generally beno fi-
nite dimensional auxiliary description.This will manifest
itself in the fact that theFsvd has no finite polynomial
expansion inv2, and the operator̂F will have an infinite
number of terms of increasingly high order ind2ydt2.
Near equilibrium, when the bandwidth of the energ
spectrumusvd greatly exceeds the reciprocal relaxatio
time of the systemt21

r ­ Ũ 00sadygb , the magnitude of
these terms decreases rapidly, and the stochastic instan
trajectories and the corresponding activation energies
logarithmic accuracy can be obtained via an extension
the variational approach used in [8].

Since we have already assumed separation of fast a
slow noise time scales this implies that the escape tim
which for practical purpose istr [as distinct from the aver-
age activation time1yW ssd], is much faster than the slow
relaxation time scale of the noise. In this case we obta
dressed activation ratesW std ­ expfdRstdykTgW0, where
W0 is the equilibrium (Kramers) activation rate and
1112
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dRstd ­ k1

µ
2us0, td

kT
2 1

∂
1 k2

√
u00s0, td
gpkT

!
, (10)

k1 ­

√
gp

gb

! Z b

a
Ũ 0fV 0g2dx , (11)

k2 ­

µ
gp

gb

∂2 Z b

a
Ũ 0fV 0Ũ 00 1 V 00Ũ 0g2dx , (12)

wherek1,2 $ 0. Near equilibrium,dRstd is small with re-
spect toDŨ, and we have kept only terms of lowest orde
in gpygb in k1,2. Rstd has been calculated to logarith-
mic accuracy, and we have ignored terms in the prefact
proportional totc andkT , and the contributions of higher
order thand2ydt2 in the Lagrangian. A systematic evalu-
ation of these small corrections is possible but does n
contribute any useful understanding to the present pro
lem in proportion to the increasing effort required to ob
tain them.

The first term in Eq. (10) is the effect of quasitherma
excitations at low frequency. The second term represen
the effects of a nonuniformity of the low-frequency
nonequilibrium excitations of the phonons, which give
rise to time correlation injp . Near equilibrium both
terms contribute, but typically they decay at differen
characteristic rates. The quasithermal excitations dec
on time scales of1yg, the relaxation time of the phonons
to thermal equilibrium. The second term will decay on
time scales of the intraphonon energy equipartition, whic
can occur in a number of ways. The smallness of high
order terms and the typical separation of time scales
the relaxation processes give rise to a particularly gene
form for the relaxation functionfstd.

The relaxation functionfstd can be viewed as the
probability for a system to be in stateS1 a time t after
the system has been prepared in stateS1 (whereDŨ ø

DŨp, as pictured in Fig. 1). Alternatively,fstd can be
regarded as the evolution of the correlation function o
the initial state, which is given in terms of the time-
dependent activation rateW std by lnfstd ­ 2

Rt
0 Wssdds.

When the phonons are in equilibrium [usvd ­ kTy2 and
dRstd ­ 0], Arrhenius activation rates and exponentia
relaxation are naturally recovered.

The phonon-phonon coupling which we have initially
neglected can lead to “spectral diffusion,” that is, a
conservative redistribution of the energy due to weak no
linear couplings between phonons. The simplest examp
of this can be described by the energy diffusion equation

≠tu ­ D≠2
vu 2 nuy2 , (13)

whereu ­ u 1 kTy2, and the last term is a consequenc
of the effects of dissipation of energy into the thermal bat
as described by Eq. (7). The initial disturbance in th
frequency domain spreads outward like a shock throug
the system and is eventually dissipated. More compl
cated models such a solitonic ones for the propagatio
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FIG. 2. The theoretical relaxation functionfstd (bold lines)
for long time, and fits to the KWW law (thin lines) and
the power law (dashed lines), where (a)a ­ 4, n ­ 0.045,
b ­ 0.2, k1 ­ 0.048, h ­ 0.27, k2 ­ 2 and (b) a ­ 3.9,
n ­ 0.048, b ­ 0.255, k1 ­ 0.0025, h ­ 0.123, k2 ­ 2.95.

of energy through the frequency domain are possib
Additionally, one could start with a model for the sprea
of energy in the spatial domain, and then transform to t
frequency domain.

For an arbitrary initial distribution of energyusv, 0d,
and provided we are near thermal equilibriumf2usv, 0d 2

kT gykT ø 1, it is possible to show by means of a simpl
Fourier analysis of Eq. (13) that Eq. (10) can be express
in the form dRstd ­ sc0a0y2de2nty2 1

P`
n­1 cnane2lnt ,

where cn ­ 2k1ykT 2 k2n2p2yv2
cgpkT with ln ­

ny2 1 Dn2p2yv2
c , and an ­ s1yvcd

Rvc

2vc
usv, 0d 3

cossnpvyvcddv.
At very short t ø 1yn, v2

cydp2 and very long times
t ¿ 1yn, there are natural crossovers to pure exponen
relaxation, and at intermediate time the relaxation can
fitted by the KWW or power law. Regardless of the initia
distribution, for time scalest . v2

cy4Dp2, dRstd takes
the form dRstd ­ exps2nty2d fa 1 b exps2ctdg, where
usually jbj , jcj. The signs ofa andb are given by the
signs ofus0, td 2 kTy2 and u00s0, td, respectively, which
is a manifestation of the fact that these two quantiti
measure the negentropic source/sink in the bath as sh
in [2]. It is important to point out that whiledRstd
is small with respect to the main contribution to th
activation energydŨ, it is not small in comparison tokT
and can change the activation rate substantially.

For times longer than the intraphonon relaxation tim
dRstd ­ a exps2nty2d, and for even longer times,t .

1yn, there will be a crossover to exponential deca
Rstd ø 0. This gives rise to a two-parameter famil
of relaxation functions which have the same qualitati
features, and are modestly well fitted by either a pow
law or a stretched exponential as shown in Fig. 2. O
results differ from the power law and the stretche
exponential as little as the two differ from each other.
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Here we have discussed only the near-equilibrium ca
where the variational solutions for the escape paths
smooth. The treatment in terms of instantons can be
tended to cases farther from equilibrium [8,10]. In th
case these solutions generically possess topological
gularities as a parameter is varied [8,11], which can gi
rise to sudden changes in behavior such as observe
[12]. Once the singularities (which are global feature
of nonequilibrium systems [11]) set in, the perturbativ
approach exemplified by Eq. (10) must break down su
denly. This breakdown is of interest in itself as the ons
of a nonequilibrium kinetic phase transition (as oppos
to the spatial symmetry breaking transition discussed
[12]). A physically observable consequence of this spo
taneous kinetic symmetry breaking would be thatW std
may possess kinks, or sudden shifts from one regime
behavior, as the escape trajectory suddenly shifts from
family with the broken symmetry to the symmetric trajec
tory as the relaxation occurs.

*Present address: James Franck Institute, University
Chicago, 5640 Ellis Ave., Chicago, IL 60637.
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