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Relaxation Kinetics of Nonlinear Systems Coupled to a Nonequilibrium Bath
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The nonexponential decay of a correlation function in physical, chemical, or biomolecular complex
systems is often taken as explicit evidence for disorder. Here we show that even without disorder,
nonexponential relaxation can arise through a coupling of the primary relaxations to the “invisible”
relaxations of the rest of the system.

PACS numbers: 63.20.Ls, 05.20.Dd, 05.40.4j, 76.20.+q

In a number of poorly understood, strongly couplednonlinear mode to the linear modes, wheris a coupling
systems, relaxation processes due to activation exhib@onstant. The last term indicates the weak nonlinear
nonexponential time dependence. Often the relaxatiophonon-phonon couplings, which we will neglect in what
function ¢(¢) of some initial excitation is well described follows and treat heuristically later. Extensions of this
by a Kohlrausch-Williams-Watts (KWW) lawg(z) =  approach to higher dimension (more nonlinear modes) are
exfd—(k.1)#], orapowerlawg () = [1 + k»t]"". This  straightforward.
is to be contrasted with the exponential time dependence We consider a purely classical interpretation &f .
of the majority of systems, which is in accord with the nor- This method will be appropriate when the temperature is
mal equilibrium activation rate theory. Here we constructhigh enough, wheri is small enough so that tunneling is
a solvable microscopic model which exhibits nonexponenunimportant, and when there are no quantum coherencies
tial relaxation, and which is also reasonably well fitted overon the time scales of interest. The linear modes then obey
appropriate time scales by either a KWW or a power lawthe classical equations of motion
The simple, yet generic, form of this model allows us to 7 y 2, _
explore the influence of an initial nonequilibrium excita- e ¥ v+ i = Vil + &0, (2)
tion of the other degrees of freedom of a complex SystenWthEV is the dissipation coefficient of the thermal bath
on the relaxation of a specific quantity of interest. of the linear modes. The fluctuating term is Gauss-

Our analysis is based on the assumption that thén white noise with mean zer¢é(s)) = 0 and with
dynamics in question can be divided into a homogeneougorrelation function(é,(1)éx(s)) = 2vkT8(t — s), given
set of essentially nonlinear modes or mutually uncoupledy the fluctuation-dissipation theorem, since the bath
relaxing species and into a vastly larger number ofB is assumed to be in thermal equilibrium. Here we
effectively linear “phonon” type modes. Here we studyhave assumed for simplicity purely Ohmic, frequency-
the case where the spectral density of the linear modegdependent dissipation of the phonon modes.
takes a particularly simple form. We will consider a one- The evolution of the linear modef is given by
dimensional scalar field theory, and take up the problem afy, ;) — y¢ + A, *"/2 cog@t + bi)
the point where a particular nonlinear moglg and a set ,
of effectively linear modeg); have been identified, and + _if dr V[o(r)]e """ 2 sine (¢t — 1),
the system has been reduced to an effective Hamiltonian wi Jo
in these variables, 3)

H = %% + Upo) + Hg + %Z(‘r”l% + wlyl) whereA, and ¢, are the initial amplitudes and phases of
k the nonequilibrium excitations of the phonons. The first
term represents the stationary solution for thein the

+ Hind (B, tho, i) — EV(‘/’O)ZW absence of the coupling t9,, the second represents the
PY k memory effects, and the third represents the effect of
+ 8 Hine (i, ) - 1) the coupling tay,.

The first two terms on the right-hand side (rhs) describe The ¢ must represent the stationary (long time) fluc-
a nonlinear mode, which represents one of the primariljyuations of the variableg; in the absence of the coupling
relaxing species in the system#Hz is the Hamiltonian to the subsystem. This term is composed of a superposi-
for the thermal bath. The fourth term describes the lineation of oscillating termsy(t) = >, Ay coSwit + ¢}),
phonon modes with frequency spectrdmy}. The next with random phases¢; and amplitudes distributed
two terms represent the coupling of the nonlinear andn proportion to the Gibbs distributionP(A}) =
linear modes to the thermal bath and the coupling of theV ! exgd —w7(A})?/2kT]. We will assume that the

1110 0031-900795/75(6)/1110(4)$06.00 © 1995 The American Physical Society



VOLUME 75, NUMBER 6 PHYSICAL REVIEW LETTERS 7 AGusT 1995

interaction of the nonlinear modes with the thermal bathtechniques [3], where the last step is the assumption
is Ohmic, and that the frequency spectrum of the lineaof an equilibrium distribution of the bath modes, there
modes is semicontinuous with a frequency dengifw) seem to have been little or no work treating explicitly

of the Debye type, the kinetics of systems coupled to a bath which itself is
302200, || = not in equilibrium, particularly the case where the bath is

plw) = { e (4)  not even in quasithermal equilibrium. Perhaps this is due

0, ol > o, to the formidable nature of the non-Markovian kinetics

which is regularized by a cutoff at high frequeney that  which arises in such cases, but near enough to equilibrium
is assumed to be larger than any typical frequency of thenat relaxation functions can be calculated explicitly even
nonlinear mode. In general, the spectrum will not be offor the case of an arbitrary perturbation of the bath, as we
this very simple type, and the dissipation will generally beyjil| presently show. Thus, instead of simply treating the
retarded [1]. As was shown in [2], the effects discusse@e|axation of a few nonlinear degrees of freedom coupled
here have a microscopic thermodynamic interpretation iflp an equilibrium bath, we are calculatiige effect of
terms of the excess physical information (negentropyihe relaxation of the rest of a semi-infinite dimensional
in the phonon bath. This interpretation and the effechonequilibrium system on the degrees of freedom of
remains qualitatively unchanged when the spectrum ighterest.
more complicated. S For the purposes of this paper we will only consider
The equation for the gross variahlg is the overdampedy,, large) case in the limit wherg,, is
. . . , small. In this case the, dependent terms which arise
do + yotho + U'(ho) = (1) + €V (wo)gﬁbk’ () (due to theyo-dependent noise) when the overdamped

here (£, (1) 40O (s) ( ) limit is taken [4] can be neglected and

where (£,(2)) = 0, and (£, (1) Ep(s)) = 2y, kT S(t — s). . -

Making use of Egs. (3) and (4) and integrating by parts, Lol + U'(go) = £,(1) + V'(go), (1) (8)

we obtain a nonlinear Langevin equation fay, The picture we have in mind is that the system is
do + (oo + U (o) = &b(1) + V/(go)é,(1), (6) Pperturbed by some external shock at time= 0. This

L . shock has the effect of exciting the nonlinear mode into
where y, and y, are the dissipation coefficients due he metastable stats1 (picture in Fig. 1) and also of

to the thermal bath and the phonons on the nonlineag, jting the linear modes into a nonequilibrium state.
modes. Note the distinction between the latter, and th?—lere we assume that the effect & on they; is small
dissipation on the phonon modes due to the external ba@hough to be neglected.

v. Inadditionl'() = v) + v,[V'(0)P, and¢, (1) is Equation (8) resembles the heuristic fluctuating barrier
a Gaussian noise witft, (1)) = 0 and an energy density ,de of Steiret al. [5], which was also an attempt to un-
(proportional to the power spectrum) derstand some aspect of nonexponential relaxation. The
1 * T fluctuating barrier models have their spiritual roots in the
uw,s) = mfm d7(€p(s)Ep(s + 7))e @) pioneering work of Landauer [6]. The coupling energy
s V(o) of the nonlinear mode to the phonons is in fact
= kT/2 + ¢ " Pu(w,0) - kT/2], the fluctuating part of the barrier. However, our equation
wheres is a slow time variable. The last term describesis derived from microscopic considerations rather than
just the effects of the damping of the linear modes by
the thermal bath. We have made the assumption that
£,(1) is effectively stationary on the fast time scale of Tvy)
7., the correlation time of the noise, so that the fast and
slow time scales are well separated. The properties, of
now depend explicitly on the nonequilibrium state of the
phonons through(w, 1), the energy density distribution at
timet. In addition, the “bare” potential is now dressed by
the oscillator bath{/ () = U(ho) — (wc/7)y, V(o). | = "\~~~ T
We have assumed a random distribution of initial phases
of the oscillators, which ensures that the noise is Gaussian.
We assumey,, is small.
Equation(7) is a nonequilibrium fluctuation-dissipation
relation. It relates the properties of the fluctuating term AU

£,(1) to the coupling constang,, (the friction coefficient Yo

_Of the phonon bath on t'he nqnlmear modes) and th%IG. 1. Typical dressed effective potentidl(y,) of the
instantaneous nonequilibrium distribution of the phonomonlinear modey,. The fluctuating part of the potential is
modes. While there is a vast literature on projectionindicated schematically.

fluctuating part
V( "’0) of potential
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heuristic ones. In order to maintain self-consistency of B 2u(0, 1) u"(0, 1)
the formulation in terms of a Langevin equation, it is nec- OR(1) = K kT I+« y kT )’ (10)
essary that the friction be spatially varyiligy,) [7]. The

analysis presented here reveals in a clear way the origin Yp N

of interesting effects in these models: They arise only in Ki=\_~ [ U'llviTdr, (11)
cases where the system which produces the fluctuations is ‘

not in thermal equilibrium. The fluctuating part of the po- Yo\ (2 o) im0 A

tential is indicated schematically in Fig. 1. The shape of K2 = <%> ]a U'v'io" + v'U'Fdx, (12)

V(o) will of course have generally a more complicated
form than the one pictured here. wherek;, = 0. Near equilibrium$R(r) is small with re-
The noise variables¢, (1) and £,(1), are mutually —SpecttoAU, and we have kept only terms of lowest order
uncorrelated(¢,(1)¢,(1)) = 0, and the probabilities of N ¥,/vs in k1. R(t) has been calculated to logarith-
various processes can be calculated via path integratigRic accuracy, and we have ignored terms in the prefactor

over the joint probability density functional proportional tor. andkT, and the contributions of higher
order tharnd?/d:? in the Lagrangian. A systematic evalu-
P(s)[&,, &p] ex;{—[ L (s)d7:|. ation of these small corrections is possible but does not

contribute any useful understanding to the present prob-
2 1 - lem in proportion to the increasing effort required to ob-
Ep(1) + 3E,(T)F(5)€,(T), tain them.

(9) The first term in Eq. (10) is the effect of quasithermal

subject to the constraint of Eq. (8) and the boundaryXcitations at low frequency. The second term represents
conditions of the process of interest. As shown in [8],the effects of a nonuniformity of the low-frequency
the operatorﬁ“(s) is obtained via the substitutiom — nonequilibrium excitations of the phonons, which gives
—id/dtin F(w,s) = 1/4y,u(w,s). rise to time correlation iné,. Near equilibrium both

This path integral formulation [Egs. (8) and (9)] terms contribute, but typically they decay at different
represents a complete formal description of the dynamicgharacteristic rates. The quasithermal excitations decay
of the nonlinear modes. Equations (8) and (9) are th@n time scales of /y, the relaxation time of the phonons
description of anon-Markovian system.While there to thermal equilibrium. The second term will decay on
exists a rather large literature in which the non-Markoviartime scales of the intraphonon energy equipartition, which
effects of noise are incorporated within Markovian can occur in a number of ways. The smallness of higher
descriptions (such as the Fokker-Planck equation) via therder terms and the typical separation of time scales of
inclusion of “auxiliary dimensions” or virtual particles the relaxation processes give rise to a particularly generic
[9], we do not make use directly of such techniquesform for the relaxation functiomb (z).
here. These techniques are most useful when noise has aThe relaxation functioné(z) can be viewed as the
simple power spectrum (such as Ornstein-UhlenbecRrobability for a system to be in statel a time: after
noise), which allows for a small set of auxiliary di- the system has been prepared in stetgwhere AU <
mensions. Because of the arbitrary shape of the powekU", as pictured in Fig. 1). Alternativelyp(z) can be
spectrum in the present case, there will generallpddi-  regarded as the evolution of the correlation function of
nite dimensional auxiliary descriptionThis will manifest ~ the initial state, which is given in terms of the time-
itself in the fact that theF(w) has no finite polynomial dependent activation rat (1) by Ing (1) = — [ W(s)ds.
expansion inw?, and the operatof will have an infinite ~ When the phonons are in equilibrium(p) = k7/2 and
number of terms of increasingly high order jﬁ/d[z_ OR(t) = 0], Arrhenius activation rates and exponential
Near equilibrium, when the bandwidth of the energyrelaxation are naturally recovered.
spectrumu(w) greatly exceeds the reciprocal relaxation The phonon-phonon coupling which we have initially
time of the system;l = U"(a)/v,, the magnitude of neglected can lead to “spectral diffusion,” that is, a
these terms decreases rapidly, and the stochastic instanté@nservative redistribution of the energy due to weak non-
trajectories and the corresponding activation energies thhear couplings between phonons. The simplest example
logarithmic accuracy can be obtained via an extension o®f this can be described by the energy diffusion equation
the variational approach used in [8]. — a2 _

Since we have already assumed separation of fast and 0 = DI, = vi/2, (13)
slow noise time scales this implies that the escape timeyhereu = u + kT /2, and the last term is a consequence
which for practical purpose is [as distinct from the aver- of the effects of dissipation of energy into the thermal bath
age activation timd /W (s)], is much faster than the slow as described by Eq. (7). The initial disturbance in the
relaxation time scale of the noise. In this case we obtaifrequency domain spreads outward like a shock through
dressed activation raté®(r) = exd dR(1)/kT Wy, where the system and is eventually dissipated. More compli-
Wy is the equilibrium (Kramers) activation rate and cated models such a solitonic ones for the propagation

1
4’)’ka

L(s) =

1112



VOLUME 75, NUMBER 6 PHYSICAL REVIEW LETTERS 7 AGusT 1995

t Here we have discussed only the near-equilibrium case,
where the variational solutions for the escape paths are
smooth. The treatment in terms of instantons can be ex-
tended to cases farther from equilibrium [8,10]. In this
case these solutions generically possess topological sin-
gularities as a parameter is varied [8,11], which can give
rise to sudden changes in behavior such as observed in
[12]. Once the singularities (which are global features
of nonequilibrium systems [11]) set in, the perturbative

FIG. 2. The theoretical relaxation functiop(s) (bold lines) approach gxempllfled b)_/ Eq..(lo) must break down sud-

for long time, and fits to the KWW law (thin lines) and denly. This breakdown is of interest in itself as the onset

the power law (dashed lines), where (@)= 4, » = 0.045,  of a nonequilibrium kinetic phase transition (as opposed

B =02, kK =0.048, n =027, ko =2 and (b) a = 3.9, to the spatial symmetry breaking transition discussed in

v =0.048, B = 0.255, k1 = 0.0025, n = 0.123, x; = 2.95. [12]). A physically observable consequence of this spon-

taneous kinetic symmetry breaking would be th&tz)

of energy through the frequency domain are possibler.nay possess kinks, or sudden shifts from one regime of

Additionally, one could start with a model for the spreadbeha\'ior’ as the escape trajeciory suddenly shifts from a

of energy in the spatial domain, and then transform to th amily with the bro'ken symmetry to the symmetric trajec-
frequency domain ’ ory as the relaxation occurs.

For an arbitrary initial distribution of energy(w, 0),
and provided we are near thermal equilibri{@a(w, 0) —
kT]/kT < 1, itiis possible to show by means of a simple
Fourier analysis of Eq. (13) that Eq. (10) can be expressed
in the form 6R(t) = (coao/2)e "> + X°_, cpane M,
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