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Abstract

We study correlation ratchets with mean-zero (unbiased) nonequilibrium noise with a nonvanishing correlation function
of odd order greater than one. Asymmetric noise of this type can induce a subtle bias into nonequilibrium systems which
can interact with other biasing influences, such as a spatial asymmetry, in a complicated way. Since temporal asymmetry
has to be regarded as a generic property of nonequilibrium systems, these effects are expected to be ubiquitous in nature.

A number of recent attempts to understand broad
principles of energy transduction in nonequilibrium
physical and biological systems have focused on cor-
relation ratchets — systems which extract work out of
fluctuations which are correlated in time (see Refs.
[1-7]). It has been shown that the combination of a
broken spatial symmetry in the potential (or ratchet
potential) and time correlations in the driving are cru-
cial, and enough to allow the transformation of the
fluctuations into work. Here we show that a broken
spatial symmetry is not required, and that temporally
asymmetric fluctuations ( with mean zero) can be used
to do work, even when the ratcher potential is com-
pletely symmetric. Temporal asymmetry, defined as a
nonvanishing of the odd moments or correlation func-
tions of the fluctuations order higher than one, and is
clearly a generic property of the nonequilibrium fluc-
tuation [8-10].

Here we consider the simplest imaginable system
which contains the crucial elements. We strongly em-
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phasize here that it is not the model or its simplifying
assumptions, but the physical principle of temporal
asymmetry that we illustrate which is important. We
hope that the extension to more complicated and re-
alistic situations will present themselves naturally to
the mind of the attentive reader.

We consider an over-damped particle in a periodic
potential U(x) = U(x+ A). The motion of the particle
in the periodic potential obeys

+U(x)=0() +F (1), (1)

where ¢ (t) is the thermal white noise with (£ (1)) =
0, ({(1){(s)) = 2kT8(t — 5), and F(r) is some ex-
ternal driving force. The evolution of the probability
density for x is given by the associated Fokker-Planck
equation,

dp(x.1) =8 (P'(x,1) + kTd:) p, (2)

where @' (x,1) =U(x) — F(t)x.
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The steady-state solution (for constant £') is found
by imposing periodic boundary conditions p,(x) =
po(x + A), and normalization fOA ps(xydx=1[11].
This yields an exact expression for the mean rate of
change of x,

1 — ef/\F‘/kT
T (I/KT) §dy § dxe #0/AT blon /il

() (3)
For F(t) which changes on time scales much slower
than the principal relaxation time of the system, the
net voltage is found by averaging,

T—OoC T
0

(x) = lim l/(J’r),dt.

Since the effect is typically exponential in the applied
force, a force with mean zero can give rise to a net
transport if the force is applied asymmetrically in time.
Since {x(F)) is an antisymmetric nonlinear function
of F, it can be expanded in a series in the odd moments
of F(t),

o

(%) =Y cann (F (1)), (4)

n=1

Therefore there will be a net transport whenever
any odd moment (F>"*'(¢)) # 0. This happens
even though the net current is zero, and therefore
is a fluctuation-induced effect. For faster noise this
statement can be generalized to the case where an
odd correlation function of order greater than one is
nonvanishing.

As a simple exampie of the eftects of slow noise we
consider the following exactly solvable case. In this
case U(x) is the piecewise linear potential pictured in
Fig. la, as considered in Ref. [ 1]. The potential is pe-
riodic and extends to infinity in both directions. A mea-
sures the spacing of the wells, A and A; the inverse
steepnesses of the potential in opposite directions out
of the wells, and @ the well depths. The expression
for the current in the adiabatic limit, which measures
the work done by the ratchet has already been derived
in this case [1,11], where

P2 sinh( AF/2kT)

KT(A/Q)?P5 — (A/Q) P Pysinh( AF/2kT)’
(5)
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Fig. 1. (a) The simple piecewise ratchet potential, where the spatial
degree of asymmetry is given by the parameter § = A} — A2. (b)
The driving force F(t) which preserved the zero mean (F(1)) =0,
where the temporal asymmetry is given by the parameter e.
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Py =cosh[(Q — L6F) /kT] — cosh(AF/2kT), (7)

where A = A + A; and 6 = A — A;. The average
current, the quantity of primary interest, is given by

7

<J>=;/J(F(t))dt, (8)

0

where 7 is the period of the driving force F(¢), which
is assumed longer than any other time scale of the
system in this adiabatic limit. Magnasco considered
this case, but only for F(t) symmetric in time, F(f) =
F(nt—1t). Here we will again consider a driving with
a zero mean, {F(t)) = 0, but which is asymmetric in
time,
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Fig. 2. The current versus A for a symmetric potential (& = 0),
with @ =1, A =1, € = £ and (a) kT =001, (b) AT = 0.1, (¢)
kT = 0.3.
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Fig. 3. The current versus k7 for a symmetric potential (& = 0),

with@ =1 A=1¢e=2and(a)A=1(b)A=08 (c) A=05.
l1+e€

F(f)=1+€A, 0<t<'5'r(l—e), mod 7,
= —A, Ir(l1-€)>t1<7, modr, (9)

as shown in Fig. 1b. In this case the time averaged
current is easily calculated,

(/) =300 +e)J(A)
+(1—e)J(—(1+e)A/(1—€))]. (10)

Fig. 2 shows that the current is a peaked function of the

amplitude of the driving. Thus, everything else being

constant, there is an optimal amplitude for the driv-
ing. Similarly Fig. 3 shows that the current is also a

)

Fig. 4. The current versus the time asymmetry parameter € with
Q@ =1,A=1, kT =001, and A = 2.1, for (a) a symmetric
potential 8 = 0 and asymmetric potentials (b) 6 = —0.3, (¢)
&=-07.

peaked function of 7. The driving, the potential, and
the thermal noise in fact play cooperative roles. Un-
less A is quite large, there are no transitions out of the
wells when kT = 0, and therefore no current, but if the
noise is too large it washes out both the potential and
the details of the driving, and the current again goes
to zero. Similarly, without the driving the transitions
in either direction are the same, but if the driving is
too large the potential plays less of a selective role,
and the current drops back down. Here the main fea-
tures introduced by the temporal asymmetry are the
interplay of the lower potential barriers in the positive
direction relative to the negative direction (for this
particular driving) and the corresponding shorter and
longer times respectively the force is felt. These types
of competitive effects appear ubiquitously in systems
where there is an interplay between thermal activation
and dynamics.

Figs. 2 and 3 are for completely symmetric poten-
tials. In these cases the exponential Arrhenius depen-
dence of the thermal activations over the barriers over-
comes the time factors, and the current is in the oppo-
site direction of that which is produced by a temporal
symmetry and a spatial asymmetry. This effect is of
course reversed if € — —e. There can also be compet-
itive effects between the temporal asymmetry and the
spatial asymmetry, as pictured in Fig. 4, which gives
rise to a very unusual switching of the direction of the
current as the asymmetry factor € is varied. This re-
versal represents the competition of the spatial asym-
metry, which dominates for small €, and the temporal
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asymmetry, which dominates for large €.

The reasons for the phenomena we discuss here are
not related to the specific approximations which al-
lowed for an analytic solution in our very simple illus-
tration, but are ubiquitous characteristics of nonequi-
librium fluctuations, and deserve to be studied in more
detail. The main idea here, that of a temporal asym-
metry in the driving, can be easily incorporated by
extending the theory of Ref. [2] to continuous, but
non-Gaussian noise, and the discrete noise models of
Ref. [5], with qualitatively similar results. In addi-
tion, fluctuating potential models [3,4] can be made
to incorporate temporal asymmetry as an important
factor if the potential changes shape as it fluctuates in
magnitude.

Our main point here is that temporal asymmetry, de-
fined as nonvanishing of the odd moments higher than
first order, can be expected to be a ubiquitous property
of most nonequilibrium systems, and can give rise to
nonequilibrium transport. We believe it is a fundamen-
tal principle, equal in importance to the observation
that spatial asymmetry and temporal correlations are
sufficient for nonequilibrium transport.

Time correlations in the driving will influence the
transitions in either direction. Since this influence de-
pends on the shape of the potential, as well as on the
properties of the noise, an asymmetry in the potential
will give rise to a net current. However, when the noise
is temporally asymmetric, its correlation properties in
either direction are different, and a net current can
arise even in the absence of a spatial asymmetry. Note
that the dependence of the strength and direction of the
current on the properties of the noise discussed here
is not related to the similar results of Refs. [2,5], in
which only temporally symmetric fluctuations where
considered, and the current vanished in the spatially
symmetric case.

Such temporal asymmetry is present in virtually
any waveform or noise with a nontrivial distribution
of frequency component phases. It is believed that
many driven biochemical processes work by cycling
through a sequence of intermediary states. These cy-
cles are driven by the steps in the hydrolysis of ATP.
If the steps in this sequence have different time scales,
which is generally the case, the result will be temporal
asymmetry, as well as correlations. Unless there is a
physical (generally equilibrium) restriction, temporal
asymmetry will probably be ubiquitous in nonequilib-

rium systems, such as biological energy transducers.

The reader should take note of another application
of temporal asymmetry by Mahato and Jayannavar
[10]. There are a number of interesting applications
of nonequilibrium fluctuations which make use of both
asymmetric fluctuations, and asymmetry in the poten-
tial. One which we think is particularly interesting is
“nonequilibrium kinetic focusing”, in which a compli-
cated, multistable system can be selectively focused
into a thermally inaccessible state by driving the sys-
tem with nonequilibrium fluctuations [12]. The fo-
cusing is made possible by tuning the noise parame-
ters to enhance transport into a given state, and sup-
press transport out of that state. In a multistate model
of the Shaker K* ion channel we have shown that the
probabilities of a thermally inaccessible state can be
increased in this way from near zero under optimal
static conditions to near one. We hope that ideas such
as this will find applications in experimental biology
and chemistry.
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